科目: 来源: 题型:
【题目】已知函数
的最小正周期是
,若将其图象向右平移
个单位后得到的图象关于
轴对称,则函数
的图象( )
A.关于直线
对称
B.关于直线
对称
C.关于点
对称
D.关于点
对称
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的焦点为F,直线
与x轴的交点为P,与抛物线的交点为Q,且
.
(1)求抛物线的方程;
(2)过F的直线l与抛物线相交于A,D两点,与圆
相交于B,C两点(A,B两点相邻),过A,D两点分别作抛物线的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF//AE,AB=AE=2.![]()
(1)求证:BD⊥平面ACFE;
(2)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
过
,倾斜角为
.以
为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的参数方程和曲线
的直角坐标方程;
(Ⅱ)已知直线
与曲线
交于
、
两点,且
,求直线
的斜率
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的四个顶点组成的四边形的面积为
,且经过点
.![]()
(1)求椭圆
的方程;
(2)若椭圆
的下顶点为
,如图所示,点
为直线
上的一个动点,过椭圆
的右焦点
的直线
垂直于
,且与
交于
两点,与
交于点
,四边形
和
的面积分别为
.求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.8元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照
分成8组,制成了如图1所示的频率分布直方图.![]()
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,该几何体是由一个直三棱柱
和一个正四棱锥
组合而成,
,
.![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)求正四棱锥
的高
,使得二面角
的余弦值是
.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数
的部分图像如图所示,将
的图象向右平移
个单位长度后得到函数
的图象.![]()
(1)求函数
的解折式;
(2)在
中,角
满足
,且其外接圆的半径
,求
的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com