科目: 来源: 题型:
【题目】已知椭圆的中心在坐标原点
,焦点在
轴上,短轴长为
,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点
与
轴不垂直的直线交椭圆于
,
两点.
(Ⅰ)求椭圆的方程.
(Ⅱ)当直线
的斜率为
时,求
的面积.
(Ⅲ)在线段
上是否存在点
,使得经
,
为领边的平行四边形是菱形?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,
底面
,底面
为梯形,
,
,且
.
![]()
(Ⅰ)若点
为
上一点且
,证明:
平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)在线段
上是否存在一点
,使得
?若存在,求出
的长;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人进行射击比赛,各射击
局,每局射击
次,射击命中目标得
分,未命中目标得
分,两人
局的得分情况如下:
甲 |
|
|
|
|
乙 |
|
|
|
|
(Ⅰ)若从甲的
局比赛中,随机选取
局,求这
局的得分恰好相等的概率.
(Ⅱ)如果
,从甲、乙两人的
局比赛中随机各选取
局,记这
局的得分和为
,求
的分布列和数学期望.
(Ⅲ)在
局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出
的所有可能取值.(结论不要求证明)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
在曲线
上,⊙
过原点
,且与
轴的另一个交点为
,若线段
,⊙
和曲线
上分别存在点
、点
和点
,使得四边形
(点
,
,
,
顺时针排列)是正方形,则称点
为曲线
的“完美点”.那么下列结论中正确的是( ).
A. 曲线
上不存在”完美点”
B. 曲线
上只存在一个“完美点”,其横坐标大于![]()
C. 曲线
上只存在一个“完美点”,其横坐标大于
且小于![]()
D. 曲线
上存在两个“完美点”,其横坐标均大于![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
分别为
与
轴,
轴的交点.
(1)写出
的直角坐标方程,并求
的极坐标;
(2)设
的中点为
,求直线
的极坐标方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
:
的离心率
,且椭圆
上一点
到点
的距离最大值为4,过点
的直线交椭圆
于点
.
(1)求椭圆
的方程;
(2)设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com