相关习题
 0  260887  260895  260901  260905  260911  260913  260917  260923  260925  260931  260937  260941  260943  260947  260953  260955  260961  260965  260967  260971  260973  260977  260979  260981  260982  260983  260985  260986  260987  260989  260991  260995  260997  261001  261003  261007  261013  261015  261021  261025  261027  261031  261037  261043  261045  261051  261055  261057  261063  261067  261073  261081  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中, 平面.

(1)求证: 平面

(2)若为线段的中点,且过三点的平面与线段交于点,确定点的位置,说明理由;并求三棱锥的高.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等腰梯形中, 于点 ,且.沿折起到的位置(如图),使

I)求证: 平面

II)求三棱锥的体积.

III)线段上是否存在点,使得平面,若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.

(1)若销售金额(单位:万元)不低于平均值的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?

(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来许多地市空气污染较为严重,现随机抽取某市一年(365天)内100天的空气质量指数()的监测数据,统计结果如表:

指数

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

4

13

18

30

20

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时,对企业没有造成经济损失;当在区间内时,对企业造成的经济损失与成直线模型(当指数为150时,造成的经济损失为1100元,当指数为200时,造成的经济损失为1400元);当指数大于300时,造成的经济损失为2000元. 

(1)试写出的表达式;

(2)试估计在本年内随机抽取1天,该天经济损失大于1100且不超过1700元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,这30天中有8天为严重污染,完成列联表,并判断是否有的把握认为该市本年度空气严重污染与供暖有关?

非严重污染

严重污染

合计

供暖季

非供暖季

合计

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重,经统计,这批学生的体重数据(单位:千克)全部介于之间,将数据分成以下组,第一组,第二组,第三组,第四组,第五组,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第组中随机抽取名学生做初检.

)求每组抽取的学生人数.

)若从名学生中再次随机抽取名学生进行复检,求这名学生不在同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求证:BF⊥平面ACFD

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,ACB=60°,E、F分别是A1C1,BC的中点.

(1)证明:平面AEB平面BB1C1C

(2)证明:C1F平面ABE;

(3)设P是BE的中点,求三棱锥P B1C1F的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,四棱锥PABCD中,ABADADDCPA⊥底面ABCD MPC的中点,N点在AB上且.

(1)证明:MN∥平面PAD

(2)求直线MN与平面PCB所成的角.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个几何体的三视图如图所示,其中正视图与侧视图是腰长为6的等腰直角三角形,俯视图是正方形.

(1)请画出该几何体的直观图,并求出它的体积;

(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCDA1B1C1D1?如何组拼?试证明你的结论;

(3)在(2)的情形下,设正方体ABCDA1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数 .

(1)若函数上单调递增,求的取值范围;

(2)设函数,若对任意的,都有 ,求的取值范围;

(3)设,点是函数的一个交点,且函数在点处的切线互相垂直,求证:存在唯一的满足题意,且.

查看答案和解析>>

同步练习册答案