相关习题
 0  260905  260913  260919  260923  260929  260931  260935  260941  260943  260949  260955  260959  260961  260965  260971  260973  260979  260983  260985  260989  260991  260995  260997  260999  261000  261001  261003  261004  261005  261007  261009  261013  261015  261019  261021  261025  261031  261033  261039  261043  261045  261049  261055  261061  261063  261069  261073  261075  261081  261085  261091  261099  266669 

科目: 来源: 题型:

【题目】过圆上的点作圆的切线过点作切线的垂线若直线过抛物线的焦点.

(1)求直线与抛物线的方程

2若直线与抛物线交于点在抛物线的准线上的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

,点在线段上,且 平面.

1)求证:平面平面

2)当四棱锥的体积最大时,求四棱锥的表面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市在2017年五一正式开业,开业期间举行开业大酬宾活动,规定:一次购买总额在区间内者可以参与一次抽奖根据统计发现参与一次抽奖的顾客每次购买金额分布情况如下

1求参与一次抽奖的顾客购买金额的平均数与中位数(同一组中的数据用该组区间的中点值作代表结果保留到整数);

2若根据超市的经营规律购买金额与平均利润有以下四组数据

试根据所给数据建立关于的线性回归方程并根据1)中计算的结果估计超市对每位顾客所得的利润.

参考公式 .

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)当时, 恒成立,求的范围;

(2)若处的切线为,求的值.并证明当)时, .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与线段交于点.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格 (单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区年该农产品的产量;

②当为何值时,销售额最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目: 来源: 题型:

【题目】四棱锥中,底面为矩形, .侧面底面.

(1)证明:

(2)设与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率,且经过点.

(1)求椭圆方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴截距的范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度 (单位:),对某种鸡的时段产蛋量(单位:) 和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

其中.

(1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

(3)已知时段投入成本的关系为,当时段控制温度为时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,以极点为平面直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系.

(1)若曲线为参数)与曲线相交于两点,求

(2)若是曲线上的动点,且点的直角坐标为,求的最大值.

查看答案和解析>>

同步练习册答案