相关习题
 0  260953  260961  260967  260971  260977  260979  260983  260989  260991  260997  261003  261007  261009  261013  261019  261021  261027  261031  261033  261037  261039  261043  261045  261047  261048  261049  261051  261052  261053  261055  261057  261061  261063  261067  261069  261073  261079  261081  261087  261091  261093  261097  261103  261109  261111  261117  261121  261123  261129  261133  261139  261147  266669 

科目: 来源: 题型:

【题目】已知椭圆的长轴长是短轴长的倍,且过点

(1)求椭圆的标准方程;

(2)若的顶点在椭圆上, 所在的直线斜率为 所在的直线斜率为,若,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】【2018届西藏拉萨市高三第一次模拟考试(期末)】如图,四棱锥底面为等腰梯形, ,点中点.

(1)证明: 平面

(2)若平面 ,直线与平面所成角的正切值为,求四棱锥的体积

查看答案和解析>>

科目: 来源: 题型:

【题目】随着科技发展,手机成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的手机了.为了调查某地区高中生一周使用手机的频率,某机构随机调查了该地区100名高中生某一周使用手机的时间(单位:小时),所取样本数据分组区间为,由此得到如图所示的频率分布直方图.

(1)求的值并估计该地区高中生一周使用手机时间的平均值;

(2)从使用手机时间在的四组学生中,用分层抽样方法抽取13人,则每层各应抽取多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.

(1)设为参数,若,求直线的参数方程;

(2)已知直线与曲线交于,设,且,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数(其中是自然对数的底数)

(1)若,当时,试比较2的大小;

(2)若函数有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆与直线相切.

(1)若直线与圆交于两点,求

(2)设圆轴的负半轴的交点为,过点作两条斜率分别为的直线交圆两点,且,试证明直线恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数)在同一半周期内的图象过点 ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.

(1)求的值;

(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线)上(如图所示),试判断点是否也落在曲线)上,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数定义在上,且可以表示为一个偶函数与一个奇函数之和,设

1)求出的解析式;

2)若对于任意恒成立,求的取值范围;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数时都取得极值.(1)求的值;(2)若对 恒成立,求的取值范围

查看答案和解析>>

同步练习册答案