科目: 来源: 题型:
【题目】【2018届西藏拉萨市高三第一次模拟考试(期末)】如图,四棱锥底面为等腰梯形, 且,点为中点.
(1)证明: 平面;
(2)若平面, ,直线与平面所成角的正切值为,求四棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着科技发展,手机成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的手机了.为了调查某地区高中生一周使用手机的频率,某机构随机调查了该地区100名高中生某一周使用手机的时间(单位:小时),所取样本数据分组区间为、、、、、、,由此得到如图所示的频率分布直方图.
(1)求的值并估计该地区高中生一周使用手机时间的平均值;
(2)从使用手机时间在、、、的四组学生中,用分层抽样方法抽取13人,则每层各应抽取多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.
(1)设为参数,若,求直线的参数方程;
(2)已知直线与曲线交于,设,且,求实数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆与直线相切.
(1)若直线与圆交于两点,求;
(2)设圆与轴的负半轴的交点为,过点作两条斜率分别为的直线交圆于两点,且,试证明直线恒过一定点,并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数()在同一半周期内的图象过点, , ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.
(1)求的值;
(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com