科目: 来源: 题型:
【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD.
![]()
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
查看答案和解析>>
科目: 来源: 题型:
【题目】某销售公司为了解员工的月工资水平,从1000位员工中随机抽取100位员工进行调查,得到如下的频率分布直方图:
![]()
(1)试由此图估计该公司员工的月平均工资;
(2)该公司工资发放是以员工的营销水平为重要依据来确定的,一般认为,工资低于4500。元的员工属于学徒阶段,没有营销经验,若进行营销将会失败;高于4500元的员工是具备营销成熟员工,基进行营销将会成功。现将该样本按照“学徒阶段工资”、“成熟员工工资”分成两层,进行分层抽样,从中抽出5人,在这5人中任选2人进行营销活动。活动中,每位员工若营销成功,将为公司赢得3万元,否则公司将损失1万元。试问在此次比赛中公司收入多少万元的可能性最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量a=(sin x,mcos x),b=(3,-1).
(1)若a∥b,且m=1,求2sin2x-3cos2x的值;
(2)若函数f(x)=a·b的图象关于直线
对称,求函数f(2x)在
上的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=|2x+1|+|x+1|.
(Ⅰ)求不等式f(x)≤8的解集;
(Ⅱ)若不等式f(x)>|a-2|对任意x∈R恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】以平面直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ=2sin θ,直线l的参数方程为
(t为参数),若l与C交于A,B两点.
(Ⅰ)求|AB|;
(Ⅱ)设P(1,2),求|PA|·|PB|的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数f(x)(x∈D),若x∈D时,均有f′(x)<f(x)成立,则称函数f(x)是J函数.
(Ⅰ)当函数f(x)=x2+m(ex+x),x≥e是J函数时,求实数m的取值范围;
(Ⅱ)若函数g(x)为R+上的J函数,试比较g(a)与ea-1g(1)的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的离心率为
,焦距为2c,且c,
,2成等比数列.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)点B坐标为(0,
),问是否存在过点B的直线l交椭圆C于M,N两点,且满足
(O为坐标原点)?若存在,求出此时直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】四棱锥A-BCDE中,侧棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分别是AD,AE的中点.
(Ⅰ)在AB上求作一点F,BC上求作一点G,使得平面FGI∥平面ACD;
(Ⅱ)求平面CHI将四棱锥A-BCDE分成的两部分的体积比.
查看答案和解析>>
科目: 来源: 题型:
【题目】某P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 人数(单位:人) |
第一组 | [20,25) | 2 |
第二组 | [25,30) | a |
第三组 | [30,35) | 5 |
第四组 | [35,40) | 4 |
第五组 | [40,45) | 3 |
第六组 | [45,50] | 2 |
![]()
(Ⅰ)求a的值并画出频率分布直方图;
(Ⅱ)在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com