相关习题
 0  260987  260995  261001  261005  261011  261013  261017  261023  261025  261031  261037  261041  261043  261047  261053  261055  261061  261065  261067  261071  261073  261077  261079  261081  261082  261083  261085  261086  261087  261089  261091  261095  261097  261101  261103  261107  261113  261115  261121  261125  261127  261131  261137  261143  261145  261151  261155  261157  261163  261167  261173  261181  266669 

科目: 来源: 题型:

【题目】已知抛物线Cy2=axa0)上一点Pt )到焦点F的距离为2t

(l)求抛物线C的方程;

(2)抛物线上一点A的纵坐标为1,过点Q(3,﹣1)的直线与抛物线C交于M,N两个不同的点(均与点A不重合),设直线AM,AN的斜率分别为k1,k2,求证:k1×k2为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求证:直线AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为赞成高考改革方案与城乡户口有关”?

赞成

不赞成

合计

城镇居民

农村居民

合计

P(K2k0

0.10

0.05

0.005

k0

2.706

3.841

7.879

注: 其中

(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为x,试求x的分布列及数学期望E(x).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x+2(m为实常数).

(1)若函数f(x)图象上动点P到定点Q(0,2)的距离的最小值为,求实数m的值;

(2)若函数yf(x)在区间[2,+∞)上是增函数,试用函数单调性的定义求实数m的取值范围;

(3)设m<0,若不等式f(x)≤kxx∈[,1]时有解,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为Cx万元,当年产量不足80千件时,Cxx2+10x万元;当年产量不少于80千件时,Cx=51x+-1 450万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完

1写出年利润L万元关于年产量x千件的函数解析式;

2年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 (a为常数)有两个极值点.

(1)求实数a的取值范围;

(2)设f(x)的两个极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=emxx2mx.

(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;

(2)若对于任意x1x2∈[-1,1],都有,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】共享单车是指企业的校园,地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,某共享单车企业为更好服务社会,随机调查了100人,统计了这100人每日平均骑行共享单车的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知骑行时间在三组对应的人数依次成等差数列

(1)求频率分布直方图中的值.

(2)若将日平均骑行时间不少于80分钟的用户定义为“忠实用户”,将日平均骑行时间少于40分钟的用户为“潜力用户”,现从上述“忠实用户”与“潜力用户”的人中按分层抽样选出5人,再从这5人中任取3人,求恰好1人为“忠实用户”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,设圆4 cos 与直线l (R)交于AB两点.

求以AB为直径的圆的极坐标方程

(Ⅱ)在圆任取一点,在圆上任取一点,求的最大值

查看答案和解析>>

同步练习册答案