科目: 来源: 题型:
【题目】以下结论错误的是( )
A.命题“若
,则
”的逆否命题为“若
,则
”
B.命题“
”是“
”的充分条件
C.命题“若
,则
有实根”的逆命题为真命题
D.命题“
,则
或
”的否命题是“
,则
且
”
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
![]()
![]()
(1)求证:
;
(2)
;
(3)设
为
中点,在
边上找一点
,使
//平面
并求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均在35微克/立方米以下空气质量为一级,在35微克/立方米
75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.北方某市环保局从2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如下图所示(十位为茎,个位为叶).
(1)15天的数据中任取3天的数据,记
表示其中空气质量达到一级的天数,求
的分布列;
(2)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.
查看答案和解析>>
科目: 来源: 题型:
【题目】本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知数列
满足
.
(1)若
,求
的取值范围;
(2)若
是公比为
等比数列,
,
求
的取值范围;
(3)若
成等差数列,且
,求正整数
的最大值,以及
取最大值时相应数列
的公差.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知公差
的等差数列
的前
项和为
,且满足
,
.
(1)求数列
的通项公式;
(2)求证:
是数列
中的项;
(3)若正整数
满足如下条件:存在正整数
,使得数列
,
,
为递增的等比数列,求
的值所构成的集合.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数![]()
(1)求证:函数f(x)-g(x)必有零点;
(2)设函数G(x)=f(x)-g(x)-1
①若函数G(x)有两相异零点且
在
上是减函数,求实数m的取值范围。
②是否存在整数a,b使得
的解集恰好为
若存在,求出a,b的值,若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】计划在某水库建一座至多安装4台发电机的水电站,过去0年的水文资料显示,水库年入流量
(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,将年入流量在以上四段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求在未来3年中,至多1年的年入流量不低于120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
的限制,并有如下关系:
![]()
若某台发电机运行,则该台发电机年利润为500万元;若某台发电机未运行,则该台发电机年亏损1500万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,且满足
.
(1)判断函数
在
上的单调性,并用定义证明;
(2)设函数
,求
在区间
上的最大值;
(3)若存在实数m,使得关于x的方程
恰有4个不同的正根,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com