相关习题
 0  261128  261136  261142  261146  261152  261154  261158  261164  261166  261172  261178  261182  261184  261188  261194  261196  261202  261206  261208  261212  261214  261218  261220  261222  261223  261224  261226  261227  261228  261230  261232  261236  261238  261242  261244  261248  261254  261256  261262  261266  261268  261272  261278  261284  261286  261292  261296  261298  261304  261308  261314  261322  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)设 ,若函数恰有一个零点,求实数的取值范围;

(2)设 ,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.

(1)求椭圆的方程;

(2)椭圆,设过点斜率存在且不为0的直线交椭圆两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,,求的值;

(2)若,求函数的单调递增区间;

(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在空间几何体中,平面平面都是边长为2的等边三角形,,点在平面上的射影在的平分线上,已知和平面所成角为.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为等;分数在内,记为等;分数在内,记为等;60分以下,记为等.同时认定为合格, 为不合格.已知甲,乙两所学校学生的原始成绩均分布在内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为的所有数据茎叶图如图2所示.

(Ⅰ)求图1中的值,并根据样本数据比较甲乙两校的合格率;

(Ⅱ)在选取的样本中,从甲,乙两校等级的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中甲校的学生人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】过双曲线的右焦点且垂直于轴的直线与双曲线交于两点,为虚轴的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.

(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量(百斤)与使用堆沤肥料(千克)之间对应数据如下表

使用堆沤肥料(千克)

2

4

5

6

8

产量的增加量(百斤)

3

4

4

4

5

依据表中的数据,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量是多少百斤?

(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且);

前8小时内的销售量(单位:份)

15

16

17

18

19

20

21

频数

10

x

16

6

15

13

y

若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求的取值范围.

附:回归直线方程为,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数满足,当时,,函数.若对任意,存在,不等式成立,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为抛物线的焦点,过的动直线交抛物线两点.当直线与轴垂直时,

(1)求抛物线的方程;

(2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线的斜率成等差数列,求点的坐标.

查看答案和解析>>

同步练习册答案