科目: 来源: 题型:
【题目】某工厂
,
两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知
,
生产线生产的产品为合格品的概率分别为
和
.
![]()
(1)从
,
生产线上各抽检一件产品,若使得至少有一件合格的概率不低于
,求
的最小值
.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的
作为
的值.
①已知
,
生产线的不合格产品返工后每件产品可分别挽回损失
元和
元。若从两条生产线上各随机抽检
件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利
元、
元、
元,现从
,
生产线的最终合格品中各随机抽取
件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为
,求
的分布列并估算该厂产量
件时利润的期望值.
查看答案和解析>>
科目: 来源: 题型:
【题目】记
表示
,
中的最大值,如![]()
.已知函数
,
.
(1)设
,求函数
在
上零点的个数;
(2)试探讨是否存在实数
,使得
对
恒成立?若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是某神奇“黄金数学草”的生长图.第1阶段生长为竖直向上长为1米的枝干,第2阶段在枝头生长出两根新的枝干,新枝干的长度是原来的
,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,新枝干的长度是原来的
,且与旧枝成120°,……,依次生长,直到永远.
![]()
(1)求第3阶段“黄金数学草”的高度;
(2)求第13阶段“黄金数学草”的高度;
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标坐标系
中,曲线
的参数方程为
(
为参数),以直角坐标系的原点为极点,以
轴的正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
(1)求曲线
的普通方程;
(2)若
与曲线
相切,且
与坐标轴交于
两点,求以
为直径的圆的极坐标方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】5名男生4名女生站成一排,求满足下列条件的排法:
(1)女生都不相邻有多少种排法?
(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?
(3)男甲不在首位,男乙不在末位,有多少种排法?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
是抛物线
:
上一点,且
到
的焦点的距离为
.
(1)若直线
与
交于
,
两点,
为坐标原点,证明:
;
(2)若
是
上一动点,点
不在直线
:
上,过
作直线垂直于
轴且交
于点
,过
作
的垂线,垂足为
.试判断
与
中是否有一个为定值?若是,请指出哪一个为定值,并加以证明;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据统计,某蔬菜基地西红柿亩产量的增加量
(百千克)与某种液体肥料每亩使用量
(千克)之间的对应数据的散点图,如图所示.
![]()
(1)依据数据的散点图可以看出,可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(若
,则线性相关程度很高,可用线性回归模型拟合);
(2)求
关于
的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量
约为多少?
附:相关系数公式![]()
,参考数据:
,
.
回归方程
中斜率和截距的最小二乘估计公式分别为:
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com