精英家教网 > 高中数学 > 题目详情

【题目】5名男生4名女生站成一排,求满足下列条件的排法:

(1)女生都不相邻有多少种排法?

(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?

(3)男甲不在首位,男乙不在末位,有多少种排法?

【答案】(1)43200(2)60480(3)287280

【解析】

试题(1)不相邻排法,可使用插空法,先将男生排好,再将男生排入女生的空档中;(2)可以先将所有学生任意全排列,再将男生三人的多余排法除去;(3)分类,先考虑甲在末位;甲在首位,乙在末位;甲不在首位,乙在末位;甲乙都在首位与末位的.

试题解析:解:(1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有 (种)不同排法.

(2)9人的所有排列方法有种,其中甲、乙、丙的排序有种,又对应甲、乙、丙只有 一种排序,所以甲、乙、丙排序一定的排法有 (种).

(3)法一:甲不在首位,按甲的排法分类,若甲在末位,则有种排法,若甲不在末位,则甲有种排法,乙有种排法,其余有种排法,综上共有(+ )= 287280(种)排法. (或者)-2+=287280(种)

(或者)-2 -=287280(种)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆过定点且与轴相切,点关于圆心的对称点为,动点的轨迹记为.

(1)求的方程;

(2)设直线与曲线交于点;直线交于点,其中,以为直径的圆为圆心)的公共弦所在直线记为,求到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)设函数,若上存在极值,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,且).

(1)若当时,函数的图象有且只要一个交点,试确定自然数的值,使得(参考数值);

(2)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是直线上的个不同的点(,均为非零常数),其中数列为等差数列.

1)求证:数列是等差数列;

2)若点是直线上一点,且,求证:

3)设,且当时,恒有都是不大于的正整数,且)试探索:若为直角坐标原点,在直线上是否存在这样的点,使得成立?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)解不等式:

(Ⅱ)当时,函数的图象与轴围成一个三角形,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①函数是奇函数;

②将函数的图像向左平移个单位长度,得到函数的图像;

③若是第一象限角且,则

是函数的图像的一条对称轴;

⑤函数的图像关于点中心对称。

其中,正确的命题序号是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为1km的扇形,中心角).为方便观赏,增加收入,在种植区域外围规划观赏区(区域II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形,其中点分别在边上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.

(1)要使观赏区的年收入不低于5万元,求的最大值;

(2)试问:当为多少时,年总收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,,底面是菱形,且,过点作直线为直线上一动点.

(1)求证:

(2)当面时,求三棱锥的体积.

查看答案和解析>>

同步练习册答案