科目: 来源: 题型:
【题目】某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):
甲班:82 84 85 89 79 80 91 89 79 74
乙班:90 76 86 81 84 87 86 82 85 83
(1)求两个样本的平均数;
(2)求两个样本的方差和标准差;
(3)试分析比较两个班的学习情况.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,直线C1的参数方程为(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+sin2θ)=2,点M的极坐标为(,).
(1)求点M的直角坐标和C2的直角坐标方程;
(2)已知直线C1与曲线C2相交于A,B两点,设线段AB的中点为N,求|MN|的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于两点,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于曲线C:,给出下列五个命题:
①曲线C关于直线y=x对称;
②曲线C关于点对称;
③曲线C上的点到原点距离的最小值为;
④当时,曲线C上所有点处的切线斜率为负数;
⑤曲线C与两坐标轴所围成图形的面积是.
上述命题中,为真命题的是_____.(将所有真命题的编号填在横线上)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆 的左右焦点分别为,,离心率为.若点为椭圆上一动点,的内切圆面积的最大值为.
(1)求椭圆的标准方程;
(2)过点作斜率为的动直线交椭圆于两点,的中点为,在轴上是否存在定点,使得对于任意值均有,若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净。假设1千克该蔬菜用清水千克清洗后,蔬菜上残留的农药为微克,通过样本数据得到关于的散点图。由数据分析可用函数拟合与的关系.
(1)求与的回归方程(精确到0.1);
(2)已知对于残留在蔬菜上的农药,当它的残留量不超过20微克时对人体无害。为了放心食用该蔬菜,请估计至少需要用多少克的清水清洗1千克蔬菜?(答案精确到0.1)
附:①参考数据:,,(其中),。
②参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数是定义在上的函数,并且满足下面三个条件:(1)对正数,都有;(2)当时,;(3);
(1)求和的值;
(2)如果不等式成立,求的取值范围;
(3)如果存在正数,使不等式有解,求正数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在某次诗词大会决赛前,甲、乙、丙丁四位选手有机会问鼎冠军,三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:猜测冠军是乙或丁;猜测冠军一定不是丙和丁;猜测冠军是甲或乙。比赛结束后发现,三个人中只有一个人的猜测是正确的,则冠军是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com