相关习题
 0  261400  261408  261414  261418  261424  261426  261430  261436  261438  261444  261450  261454  261456  261460  261466  261468  261474  261478  261480  261484  261486  261490  261492  261494  261495  261496  261498  261499  261500  261502  261504  261508  261510  261514  261516  261520  261526  261528  261534  261538  261540  261544  261550  261556  261558  261564  261568  261570  261576  261580  261586  261594  266669 

科目: 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.

表甲套设备的样本的频数分布表

质量指标值

频数

2

10

36

38

12

2

(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?

(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.

甲套设备

乙套设备

合计

合格品

不合格品

合计

附表及公式:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】山西省在2019年3月份的高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图:

(1)求全市数学成绩在135分以上的人数;

(2)试由样本频率分布直方图佔计该校数学成绩的平均分数;

(3)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的分布列和期望.

附:若,则

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大学数学学院拟从往年的智慧队和理想队中选拔4名大学生组成志愿者招募宣传队.往年的智慧对和理想队的构成数据如下表所示,现要求选出的4名大学生中两队中的大学生都要有.

(1)求选出的4名大学生仅有1名女生的概率;

(2)记选出的4名大学生中女生的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】各项均为正数的等比数列满足,,若函数的导函数为, ( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】天津大学某学院欲安排4名毕业生到某外资企业的三个部门实习,要求每个部门至少安排1人,其中甲大学生不能安排到部门工作的方法有_______种(用数字作答).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)设函数.若存在区间,使得函数上的值域为,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,若在四个点中有3个在上.

(1)求椭圆的方程;

(2)若点与点是椭圆上关于原点对称的两个点,且,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为小时,其余工人加工完乙型装置所需时间为小时,则生产1000台某产品的总加工时间y是一个关于x的函数。

1)求y关于x的函数解析式;

2)如何分配工人才能使生产1000台某产品的总加工时间最少?

查看答案和解析>>

科目: 来源: 题型:

【题目】某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.

(1)求甲、乙两名学生共答对2个问题的概率.

(2)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?

查看答案和解析>>

同步练习册答案