科目: 来源: 题型:
【题目】已知双曲线
的右顶点到其一条渐近线的距离等于
,抛物线
的焦点与双曲线
的右焦点重合,则抛物线
上的动点
到直线
和
距离之和的最小值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为![]()
且
;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为
分,乙和丙最后得分都是
分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )
A. 乙有四场比赛获得第三名
B. 每场比赛第一名得分
为![]()
C. 甲可能有一场比赛获得第二名
D. 丙可能有一场比赛获得第一名
查看答案和解析>>
科目: 来源: 题型:
【题目】已知半径为
的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线
与圆相交于
两点,求实数
的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数
,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,长度为3的线段
的端点
、
分别在
,
轴上滑动,点
在线段
上,且
,
(1)若点
的轨迹为曲线
,求其方程;
(2)过点
的直线
与曲线
交于不同两点
、
,
是曲线上不同于
、
的动点,求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
为椭圆
的左、右顶点,
为其右焦点,
是椭圆
上异于
的动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)直线
与椭圆在点
处的切线交于点
,当点
在椭圆上运动时,求证:以
为直径的圆与直线
恒相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )
A. 240种 B. 360种 C. 480种 D. 600种
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为
,但由于体力原因,第7场获胜的概率为
.
(1)求甲队分别以
,
获胜的概率;
(2)设
表示决出冠军时比赛的场数,求
的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
分数段 | 理科人数 | 文科人数 |
|
| |
|
| |
|
|
|
| 正 | 正 |
| 正 |
|
|
|
|
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.
![]()
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地某路无人驾驶公交车发车时间间隔
(单位:分钟)满足
,
.经测算,该路无人驾驶公交车载客量
与发车时间间隔
满足:
,其中
.
(1)求
,并说明
的实际意义;
(2)若该路公交车每分钟的净收益
(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.
查看答案和解析>>
科目: 来源: 题型:
【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
![]()
(Ⅰ)求图中
的值,并估计该班期中考试数学成绩的众数;
(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com