相关习题
 0  261452  261460  261466  261470  261476  261478  261482  261488  261490  261496  261502  261506  261508  261512  261518  261520  261526  261530  261532  261536  261538  261542  261544  261546  261547  261548  261550  261551  261552  261554  261556  261560  261562  261566  261568  261572  261578  261580  261586  261590  261592  261596  261602  261608  261610  261616  261620  261622  261628  261632  261638  261646  266669 

科目: 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目: 来源: 题型:

【题目】已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)设直线 与圆相交于两点,求实数的取值范围;

(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,长度为3的线段的端点分别在轴上滑动,点在线段上,且

(1)若点的轨迹为曲线,求其方程;

(2)过点的直线与曲线交于不同两点是曲线上不同于的动点,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为椭圆的左、右顶点,为其右焦点,是椭圆上异于的动点,且面积的最大值为.

(1)求椭圆的方程;

(2)直线与椭圆在点处的切线交于点,当点在椭圆上运动时,求证:以 为直径的圆与直线恒相切.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )

A. 240种 B. 360种 C. 480种 D. 600种

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为

(1)求甲队分别以获胜的概率;

(2)设表示决出冠军时比赛的场数,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:

分数段

理科人数

文科人数

(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.

(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地某路无人驾驶公交车发车时间间隔(单位:分钟)满足.经测算,该路无人驾驶公交车载客量与发车时间间隔满足:,其中

1)求,并说明的实际意义;

2)若该路公交车每分钟的净收益(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.

查看答案和解析>>

科目: 来源: 题型:

【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求图中的值,并估计该班期中考试数学成绩的众数;

(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.

查看答案和解析>>

同步练习册答案