相关习题
 0  261475  261483  261489  261493  261499  261501  261505  261511  261513  261519  261525  261529  261531  261535  261541  261543  261549  261553  261555  261559  261561  261565  261567  261569  261570  261571  261573  261574  261575  261577  261579  261583  261585  261589  261591  261595  261601  261603  261609  261613  261615  261619  261625  261631  261633  261639  261643  261645  261651  261655  261661  261669  266669 

科目: 来源: 题型:

【题目】中, 为线段的中点, 为线段的三等分点(如图1).将沿着折起到的位置,连接(如图2).

1若平面平面求三棱锥的体积;

2记线段的中点为平面与平面的交线为求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的取值范围;

(2)已知关于的方程有两个实根,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额 (百元)的频率分布直方图如图所示:

(1)求网民消费金额的中位数

(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关;

(3)将(2)中的频率当作概率,电子商务平台从该市网民中随机抽取10人赠送电子礼金,求这10人中女性的人数的数学期望.

合计

30

合计

45

附表:

.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直三棱柱中, 是棱的中点.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定点,定直线,动点到点的距离比点的距离小1.

(1)求动点P的轨迹C的方程;

(2)过点的直线与(1)中轨迹C相交于两个不同的点M、N,若,求直线的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在平面直角坐标系中,圆的参数方程为为参数),以原点为极点,以轴为非负半轴为极轴建立极坐标系.

(1)求圆的普通方程与极坐标方程;

(2)若直线的极坐标方程为,求圆上的点到直线的最大距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的一条直角是椭圆的长轴,动直线,当过椭圆上一点且与圆相交于点时,弦的最小值为.

(1)求圆即椭圆的方程;

(2)若直线是椭圆的一条切线,是切线上两个点,其横坐标分别为,那么以为直径的圆是否经过轴上的定点?如果存在,求出定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t(0,14]时,曲线是二次函数图象的一部分,当t[14,40]时,曲线是函数)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.

(1)试求的函数关系式;

(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.

查看答案和解析>>

同步练习册答案