科目: 来源: 题型:
【题目】
某初级中学共有学生2000名,各年级男、女生人数如下表:
初一年级 | 初二年级 | 初三年级 | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
求x的值;
现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
已知y
245,z
245,求初三年级中女生比男生多的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,点
也为抛物线
的焦点.(1)若
为椭圆
上两点,且线段
的中点为
,求直线
的斜率;
(2)若过椭圆
的右焦点
作两条互相垂直的直线分别交椭圆于
和
,设线段
的长分别为
,证明
是定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示。
![]()
(1)求第3、4、5组的频率;
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于6中特等奖,等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中二等奖的概率;
(2)求未中奖的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,若acos2
+ccos2
=
b.
(1)求证:a,b,c成等差数列;
(2)若∠B=60°,b=4,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】直三棱柱
中,
,
分别是
,
的中点,
,
为棱
上的点.
![]()
证明:
;
证明:
;
是否存在一点
,使得平面
与平面
所成锐二面角的余弦值为
?若存在,说明点
的位置,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出以下命题,其中真命题的个数是( )
①若“
或
”是假命题,则“
且
”是真命题;
②命题“若
,则
或
”为真命题;
③已知空间任意一点
和不共线的三点
,
,
,若
,则
,
,
,
四点共面;
④直线
与双曲线
交于
,
两点,若
,则这样的直线有3条;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量
,
,
,
,函数
,
的最小正周期为
.
(1)求
的单调增区间;
(2)方程
;在
上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得
+
+m(
-
)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
过点
,
,且圆心
在直线
上,过点
作直线
与圆
:
交于两点
,
.
(1)求圆
的方程;
(2)当
时,若
于圆
交于
,
且
,求直线
的方程;
(3)若点
恰好是线段
的中点,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com