科目: 来源: 题型:
【题目】已知数列
的前
项和
,数列
是正项等比数列,且
,
.
(1)求数列
和
的通项公式;
(2)记
,是否存在正整数
,使得对一切
,都有
成立?若存在,求出M的最小值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某研究性学习小组对昼夜温差大小与某种子发芽多少之间的关系进行研究,下面是3月1日至5日每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数的详细记录:
(1)根据3月2日至3月4日的数据,用最小二乘法求出y关于x的线性回归方程;
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均小于2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
参考公式:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以原点为极点,以
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线
的极坐标方程为:
.
(1)若曲线
的参数方程为
(
为参数),求曲线
的直角坐标方程和曲线
的普通方程;
(2)若曲线
的参数方程为
(
为参数),
,且曲线
与曲线
的交点分别为
、
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在极坐标系中,曲线C:ρ=2sinθ,A、B为曲线C的两点,以极点为原点,极轴为x轴非负半轴的直角坐标中,曲线E:
是参数)上一点P,则∠APB的最大值为 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】
年微信用户数量统计显示,微信注册用户数量已经突破
亿.微信用户平均年龄只有
岁,
的用户在
岁以下,
的用户在
岁之间,为调查大学生这个微信用户群体中每人拥有微信的数量,现在从北京大学生中随机抽取
位同学进行了抽样调查,结果如下:
微信群数量 | 频数 | 频率 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
合计 |
|
|
(
)求
,
,
的值.
(
)若从
位同学中随机抽取
人,求这
人中恰有
人微信群个数超过
个的概率.
(
)以这
个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取
人,记
表示抽到的是微信群个数超过
个的人数,求
的分布列和数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com