相关习题
 0  261829  261837  261843  261847  261853  261855  261859  261865  261867  261873  261879  261883  261885  261889  261895  261897  261903  261907  261909  261913  261915  261919  261921  261923  261924  261925  261927  261928  261929  261931  261933  261937  261939  261943  261945  261949  261955  261957  261963  261967  261969  261973  261979  261985  261987  261993  261997  261999  262005  262009  262015  262023  266669 

科目: 来源: 题型:

【题目】甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.

(1)求乙得分的分布列和数学期望;

(2)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线的参数方程为,曲线的极坐标方程为

(1)求曲线的直角坐标方程

(2)设直线与曲线相交于两点,时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C 的离心率与双曲线的离心率互为倒数,且过点

1)求椭圆C的方程;

2)过作两条直线与圆相切且分别交椭圆于MN两点.

求证:直线MN的斜率为定值;

MON面积的最大值(其中O为坐标原点).

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的几何体中,四边形为平行四边形,  平面,且的中点.

1)求证: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:

年龄

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人数

4

5

8

5

3

年龄

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人数

6

7

3

5

4

经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.

(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;

(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大学高等数学这学期分别用两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图。 学校规定:成绩不得低于85分的为优秀

(1)根据以上数据填写下列的的列联表

总计

成绩优秀

成绩不优秀

总计

(2)是否有的把握认为成绩优异与教学方式有关?”(计算保留三位有效数字)

下面临界值表仅供参考:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数恰有3个零点,则实数的取值范围为( )

A. B. C. D.

【答案】A

【解析】,上单调递减.,上递增,那么零点个数至多有一个,不符合题意,.故需,,使得第一段有一个零点,.对于第二段, ,故需在区间有两个零点, ,上递增,上递减,所以,解得.综上所述,

点睛本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.

型】单选题
束】
13

【题目】 满足约束条件,则的最大值为_______

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),其中.以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求出曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线交于 两点,记点 相应的参数分别为 ,当时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法中正确的个数是( )

(1) 已知,则 

(2)将6个相同的小球放入4个不同的盒子中,要求不出现空盒,共有10种放法.

(3) 除后的余数为

(4) 若,则

(5)抛掷两个骰子,取其中一个的点数为点的横坐标,另一个的点数为点的纵坐标,连续抛掷这两个骰子三次,点在圆内的次数的均值为

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 .

(1)求的单调递减区间;

(2)证明:当时, 恒成立.

查看答案和解析>>

同步练习册答案