科目: 来源: 题型:
【题目】甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.
(1)求乙得分的分布列和数学期望;
(2)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线的参数方程为,曲线的极坐标方程为
(1)求曲线的直角坐标方程
(2)设直线与曲线相交于两点,时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C: 的离心率与双曲线的离心率互为倒数,且过点.
(1)求椭圆C的方程;
(2)过作两条直线与圆相切且分别交椭圆于M、N两点.
① 求证:直线MN的斜率为定值;
② 求△MON面积的最大值(其中O为坐标原点).
查看答案和解析>>
科目: 来源: 题型:
【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人数 | 4 | 5 | 8 | 5 | 3 |
年龄 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人数 | 6 | 7 | 3 | 5 | 4 |
经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;
(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学高等数学这学期分别用两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图。 学校规定:成绩不得低于85分的为优秀
(1)根据以上数据填写下列的的列联表
甲 | 乙 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(2)是否有的把握认为成绩优异与教学方式有关?”(计算保留三位有效数字)
下面临界值表仅供参考:
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数恰有3个零点,则实数的取值范围为( )
A. B. C. D.
【答案】A
【解析】,在上单调递减.若,则在上递增,那么零点个数至多有一个,不符合题意,故.故需当时,且,使得第一段有一个零点,故.对于第二段, ,故需在区间有两个零点, ,故在上递增,在上递减,所以,解得.综上所述,
【点睛】本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.
【题型】单选题
【结束】
13
【题目】设, 满足约束条件,则的最大值为_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),其中.以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求出曲线的普通方程和曲线的直角坐标方程;
(2)已知曲线与交于, 两点,记点, 相应的参数分别为, ,当时,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法中正确的个数是( )
(1) 已知,,,则
(2)将6个相同的小球放入4个不同的盒子中,要求不出现空盒,共有10种放法.
(3) 被除后的余数为.
(4) 若,则=
(5)抛掷两个骰子,取其中一个的点数为点的横坐标,另一个的点数为点的纵坐标,连续抛掷这两个骰子三次,点在圆内的次数的均值为
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com