科目: 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式的n的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:(a>b>0),以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2,且∠BF1F2=.
(1)求椭圆C的标准方程;
(2)若过点Q(1,)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】设命题p:方程x2+(2m-4)x+m=0有两个不等的实数根:命题q:x∈[2,3],不等式x2-4x+13≥m2恒成立.
(1)若命题p为真命题,则实数m的取值范围;
(2)若命题p∨q为真命题,命题p∧q为假命题,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k (k > 0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(Ⅰ)当t=4,时,求△AMN的面积;
(Ⅱ)当时,求k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆:的离心率,,分别为左、右焦点,过的直线交椭圆于,两点,且的周长为8.
(1)求椭圆的方程;
(2)设过点的直线交椭圆于不同两点,.为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在R上的函数f(x)是奇函数,且满足f(3-x)=f(x),f(-1)=3,数列{an}满足a1=1且an=n(an+1-an)(n∈N*),则f(a36)+f(a37)=( )
A. B. C. 2D. 3
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,多面体, , ,且两两垂直.给出下列四个命题:
①三棱锥的体积为定值;
②经过四点的球的直径为;
③直线∥平面;
④直线所成的角为;
其中真命题的个数是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;
(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.
附:.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com