科目: 来源: 题型:
【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.
(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | |||
对商品不满意 | |||
合计 |
(2)若将频率视为概率,某人在该网购平台上进行的次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.
附: (其中为样本容量)
查看答案和解析>>
科目: 来源: 题型:
【题目】设是公差为的等差数列,是公比为()的等比数列,记.
(1)令,求证:数列为等比数列;
(2)若,,数列前2项和为14,前8项和为857,求数列通项公式;
(3)在(2)的条件下,问:数列中是否存在四项、、、成等差数列?请证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两城相距100,在两城之间距甲城处的丙地建一核电站给甲、乙两城供电,为保证城市安全,核电站距两地的距离不少于10.已知各城供电费用(元)与供电距离()的平方和供电量(亿千瓦时)之积都成正比,比例系数均是=0.25,若甲城供电量为20亿千瓦时/月,乙城供电量为10亿千瓦时/月,
(1)把月供电总费用(元)表示成()的函数,并求其定义域;
(2)求核电站建在距甲城多远处,才能使月供电总费用最小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(Ⅰ)将曲线的直角坐标方程化为极坐标方程;
(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的取值范围.
【答案】(I);(II).
【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.
试题解析:(Ⅰ)由及,得,即
所以曲线的极坐标方程为
(II)将的参数方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范围是.
【题型】解答题
【结束】
23
【题目】已知、、均为正实数.
(Ⅰ)若,求证:
(Ⅱ)若,求证:
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,
(Ⅰ)当时,求函数的单调递减区间;
(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;
(Ⅲ)若数列满足, ,记的前项和为,求证: .
【答案】(I);(II);(III)证明见解析.
【解析】试题分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(Ⅱ)当时,因为,所以显然不成立,先证明因此时, 在上恒成立,再证明当时不满足题意,从而可得结果;(III)先求出等差数列的前项和为,结合(II)可得,各式相加即可得结论.
试题解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函数的单调递减区间为 .
(Ⅱ)由得,
当时,因为,所以显然不成立,因此.
令,则,令,得.
当时, , ,∴,所以,即有.
因此时, 在上恒成立.
②当时, , 在上为减函数,在上为增函数,
∴,不满足题意.
综上,不等式在上恒成立时,实数的取值范围是.
(III)证明:由知数列是的等差数列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 将以上各式左右两边分别相加,得
.因为
所以
所以.
【题型】解答题
【/span>结束】
22
【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(Ⅰ)将曲线的直角坐标方程化为极坐标方程;
(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()
(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
科目: 来源: 题型:
【题目】某地建一座桥,两端的桥墩已建好,这两墩相距640米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,设需要新建个桥墩,记余下工程的费用为万元.
(1)试写出关于的函数关系式;(注意:)
(2)需新建多少个桥墩才能使最小?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com