相关习题
 0  261979  261987  261993  261997  262003  262005  262009  262015  262017  262023  262029  262033  262035  262039  262045  262047  262053  262057  262059  262063  262065  262069  262071  262073  262074  262075  262077  262078  262079  262081  262083  262087  262089  262093  262095  262099  262105  262107  262113  262117  262119  262123  262129  262135  262137  262143  262147  262149  262155  262159  262165  262173  266669 

科目: 来源: 题型:

【题目】“水是生命之源”,但是据科学界统计可用淡水资源仅占地球储水总量的,全世界近人口受到水荒的威胁.某市为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨):一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)设该市有60万居民,估计全市居民中月均用水量不低于2.5吨的人数,并说明理由;

(3)若该市政府希望使的居民每月的用水不按议价收费,估计的值,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的参数方程为(t为参数).

(1)写出曲线的参数方程和直线的普通方程;

(2)已知点是曲线上一点,,求点到直线的最小距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】国家规定,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品硏究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:

未感染病毒

感染病毒

总计

未注射疫苗

40

p

x

注射疫苗

60

q

y

总计

100

100

200

现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为.

(1)求列联表中的数据pq的值;

(2)能否有把握认为注射此种疫苗有效?

(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只进行病例分析,然后从这五只小白鼠中随机抽取3只对注射疫苗情况进行核实,求至少抽到2只为未注射疫苗的小白鼠的概率. 附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】正方体的棱长为2,分别为的中点,则(

A.直线与直线垂直B.直线与平面平行

C.平面截正方体所得的截面面积为D.与点到平面的距离相等

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为

1)求的解析式;

2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,试写出函数的解析式.

3)在(2)的条件下,若存在,使得不等式成立,求实数的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】研究变量得到一组样本数据,进行回归分析,有以下结论

①残差平方和越小的模型,拟合的效果越好;

②用相关指数来刻画回归效果,越小说明拟合效果越好;

③线性回归方程对应的直线至少经过其样本数据点中的一个点;

④若变量之间的相关系数为,则变量之间的负相关很强.

以上正确说法的个数是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.

(1)求图中的值;

(2)估计该校担任班主任的教师月平均通话时长的中位数;

(3)在这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若,讨论的单调性;

(2)若,且对于函数的图象上两点 ,存在,使得函数的图象在处的切线.求证;.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市交通管理部门为了解市民对机动车“单双号限行”的态度,随机采访了100名市民,将他们的意见和是否拥有私家车的情况进行了统计,得到了如下的列联表:

赞同限行

不赞同限行

合计

没有私家车

15

有私家车

45

合计

100

已知在被采访的100人中随机抽取1人且抽到“赞同限行”者的概率是.

(1)请将上面的列联表补充完整;

(2)根据上面的列联表判断能否在犯错误的概率不超过0.10的前提下认为“对限行的态度与是否拥有私家车有关”;

(3)将上述调查所得到的频率视为概率.现在从该市大量市民中,采用随机抽样方法每次抽取1名市民,抽取3次,记被抽取的3名市民中的“赞同限行”人数为.若每次抽取的结果是相互独立的,求的分布列、期望和方差.

附:参考公式:,其中.

临界值表:

0.15

0.10

0.05

0.025

0.10

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案