科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数)以坐标原点
为极点,
轴正半轴为极轴建立极坐标系.
(1)求曲线
的普通方程和极坐标方程;
(2)直线
的极坐标方程为
,若
与
的公共点为
,且
是曲线
的中心,求
的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数
在同一个周期内,当
时y取最大值1,当
时,y取最小值﹣1.
(1)求函数的解析式y=f(x);
(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系
中,椭圆
的中心在原点,点
在椭圆
上,且离心率为
.
(1)求椭圆
的标准方程;
(2)动直线
交椭圆
于
,
两点,
是椭圆
上一点,直线
的斜率为
,且
,
是线段
上一点,圆
的半径为
,且
,求![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
(
)的离心率是
,点
在短轴
上,且
。
(1)球椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
两点。是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方
中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出
条较为详细的评价信息进行统计,车辆状况的优惠活动评价的
列联表如下:
![]()
(1)能否在犯错误的概率不超过
的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过
向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过转赠给好友.某用户共获得了5张骑行券,其中只有2张是一元券.现该用户从这5张骑行券中随机选取2张转赠给好友,求选取的张中至少有1张是一元券的概率.
![]()
参考公式:
,其中
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】207年8月8日晚我国四川九赛沟县发生了7.0级地震,为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 |
|
|
|
|
频数 | 6 |
| 24 |
|
![]()
(1)求
的值;
(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为
,求
的分布列及数学期望
;
(3)设函数
(其中
表示
的方差)是评估安全教育方案成效的一种模拟函数.当
时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?
查看答案和解析>>
科目: 来源: 题型:
【题目】某种产品的广告费用支出
与销售额
之间有如下的对应数据:
| 2 | 4 | 5 | 6 | 8 |
| 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为10时,销售收入
的值.
参考公式及数据:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com