相关习题
 0  262067  262075  262081  262085  262091  262093  262097  262103  262105  262111  262117  262121  262123  262127  262133  262135  262141  262145  262147  262151  262153  262157  262159  262161  262162  262163  262165  262166  262167  262169  262171  262175  262177  262181  262183  262187  262193  262195  262201  262205  262207  262211  262217  262223  262225  262231  262235  262237  262243  262247  262253  262261  266669 

科目: 来源: 题型:

【题目】已知等差数列满足.

(1)求的通项公式;

(2)设等比数列满足,问: 与数列的第几项相等?

查看答案和解析>>

科目: 来源: 题型:

【题目】己知某区甲、乙、丙三所学校的教师志愿者人数分别为24016080.为助力疫情防控,现采用分层抽样的方法,从这三所学校的教师志愿者中抽取6名教师,参与抗击疫情·你我同行下卡口执勤值守专项行动.

(Ⅰ)求应从甲、乙、丙三所学校的教师志愿者中分别抽取的人数;

(Ⅱ)设抽出的6名教师志愿者分别记为,现从中随机抽取2名教师志愿者承担测试体温工作.

i)试用所给字母列举出所有可能的抽取结果;

ii)设为事件抽取的2名教师志愿者来自同一所学校,求事件发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】【选修4-4,坐标系与参数方程】

在直角坐标系中,直线的参数方程为t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

)求直线的普通方程与曲线C的直角坐标方程;

)若直线轴的交点为P,直线与曲线C的交点为A,B,的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数,曲线在点处的切线方程为

(1)求的值;

(2)若,求函数的单调区间;

(3)设函数,且在区间内存在单调递减区间,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率,(单位:)与管道半径r(单位:cm)的四次方成正比.

1)写出气体流量速率,关于管道半径r的函数解析式;

2)若气体在半径为3cm的管道中,流量速率为,求该气体通过半径为r的管道时,其流量速率v的表达式;

3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率(精确到.

查看答案和解析>>

科目: 来源: 题型:

【题目】一家商店使用一架两臂不等长的天平称黄金,一位顾客到店里购买黄金,售货员先将的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.你认为顾客购得的黄金是小于,等于,还是大于?为什么?

查看答案和解析>>

科目: 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2不足1小时的部分按1小时计算甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为;一小时以上且不超过两小时还车的概率分别为;两人租车时间都不会超过三小时.

求甲、乙两人所付租车费用相同的概率;

设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在几何体中,,平面平面的中点.

(Ⅰ)证明:平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:

阅读过莫言的作品数(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10


(1)试估计该学校学生阅读莫言作品超过50篇的概率.

(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为“对莫言作品的非常了解”与性别有关?

非常了解

一般了解

合计

男生

女生

合计

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中, ,沿翻折到的位置,使平面平面.

(1)求证: 平面

(2)若在线段上有一点满足,且二面角的大小为,求的值.

查看答案和解析>>

同步练习册答案