科目: 来源: 题型:
【题目】已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆的切线,,切点分别为,.
(1)若,试求点的坐标;
(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;
(3)求证:经过,,三点的圆必过定点,并求出所有定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某单位开展岗前培训期间,甲、乙2人参加了5次考试,成绩统计如下:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成绩 | 82 | 82 | 79 | 95 | 87 |
乙的成绩 | 95 | 75 | 80 | 90 | 85 |
(1)根据有关统计知识回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适?请说明理由;
(2)根据有关概率知识解答以下问题:若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆 (a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
(I)求椭圆的方程;
(II)设直线l: 与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 (O为原点) ,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】从某小学随机抽取100名学生,将他们的身高(单位:厘米)按照区间 [ 100 , 110),[ 110 , 120),[ 120 , 130),[130 ,140) , [140 , 150] 进行分组,得到频率分布直方图(如图).
(Ⅰ)求直方图中a的值;
(Ⅱ)若要从身高在[ 120 , 130),[130 ,140) , [140 , 150] 三组内的学生中,用分层抽样的方法选取18人参加一项活动,求从身高在[140 ,150]内的学生中应选取的人数;
(Ⅲ)这100名学生的平均身高约为多少厘米?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某运动员毎次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,3,4表示命中,5,6,7,8,9,0表示不命中;再以三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
据此估计,该运动员三次投篮恰有两次命中的概率为_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列命题:
①“数列为等比数列”是“数列为等比数列”的充分不必要条件;
②“”是“函数在区间上为增函数”的充要条件;
③“”是“直线与直线互相垂直”的充要条件;
④设,,分别是三个内角,,所对的边,若,,则“”是“”的必要不充分条件.其中,真命题的序号是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国有一道古典数学名著——两鼠穿墙:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”题意是:“有两只老鼠从墙的两边打洞穿墙(连线与墙面垂直),大老鼠第一天进一尺,以后每天加倍,小老鼠第一天也进一尺,以后每天减半,那么两鼠第几天能见面.”假设墙厚16尺,如图是源于该题思想的一个程序框图,则输出的( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,某小区为美化环境,准备在小区内的草坪的一侧修建一条直路OC,另一侧修建一条休闲大道.休闲大道的前一段OD是函数的图象的一部分,后一段DBC是函数的图象,图象的最高点为,且,垂足为点F.
(1)求函数的解析式;
(2)若在草坪内修建如图所示的矩形儿童乐园PMFE,点P在曲线OD上,其横坐标为,点E在OC上,求儿童乐园的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com