科目: 来源: 题型:
【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 |
|
|
|
|
|
|
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
![]()
(1)求|
|;
(2)已知点D是AB上一点,满足
=λ
,点E是边CB上一点,满足
=λ
.
①当λ=
时,求![]()
;
②是否存在非零实数λ,使得
⊥
?若存在,求出的λ值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某观测站
在目标
的南偏西
方向,从
出发有一条南偏东
走向的公路,在
处测得与
相距
的公路
处有一个人正沿着此公路向
走去,走
到达
,此时测得
距离为
,若此人必须在
分钟内从
处到达
处,则此人的最小速度为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】要得到函数
的图象,只要将函数
的图象( )
A.每一点的横坐标变为原来的
倍(纵坐标不变),再将所得图象向左平移
个长度
B.每一点的横坐标变为原来的
倍(纵坐标不变),再将所得图象向左平移
个长度
C.向左平移
个长度,再将所得图象每一点的横坐标变为原来的
倍(纵坐标不变)
D.向左平移
个长度,再将所得图象每一点的横坐标变为原来的
倍(纵坐标不变)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的坐标方程为
,若直线
与曲线
相切.
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
、
于原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学用“五点法”画函数
,在某一周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
x |
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,并求函数
的解析式;
(2)求函数
的单调递增区间;
(3)求函数
在区间
上的最大值和最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知过抛物线
的焦点
,斜率为
的直线交抛物线于
两点,且
.
(1)求该抛物线
的方程;
(2)已知抛物线上一点
,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来我国电子商务行业迎来发展的新机遇,与此同时,相关管理部门推出了针对电商商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品好评率为
,对服务好评率为
,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
注:1.
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:2.
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com