科目: 来源: 题型:
【题目】如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面a内作菱形ABCD,边长为1,∠BAD=60°,再在a的上方,分别以△ABD与△CBD为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
![]()
(1)求二面角P-BD-Q的余弦值;
(2)求点P到平面QBD的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=4sin
cos x+
.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数g(x)=f(x)-m区间在
上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正多面体共有5种,即正四面体、正六面体、正八面体、正十二面体和正二十面体.任一个正多面体都有内切球和外接球,若一个半径为1的球既是一个正四面体的内切球,又是一个正六面体的外接球,则这两个多面体的顶点之间的最短距离为( )
A.
-1B.1C.2
-1D.2
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合
是满足下列性质的函数
的全体:在定义域
内存在实数
,使得
成立.
(1)已知函数
,判断 函数
是否属于集合
;
(2)若函数
属于集合
,试求实数
的取值范围;
(3) 证明函数
属于集合
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如表提供了工厂技术改造后某种型号设备的使用年限
和所支出的维修费
(万元)的几组对照数据:
| 2 | 3 | 4 | 5 | 6 |
| 1 | 2.5 | 3 | 4 | 4.5 |
参考公式:
,
.
(1)若知道
对
呈线性相关关系,请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?
查看答案和解析>>
科目: 来源: 题型:
【题目】我校高一年级某研究小组经过调查发现:提高北环隧道的车辆通行能力可有效改善交通状况,在一般情况下,隧道内的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米,车流密度指每千米道路上车辆的数量)的函数.当隧道内的车流密度达到210辆/千米时,将造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为60千米/小时,研究表明:当
时,车流速度
是车流密度
的一次函数.
(1)求函数
的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com