相关习题
 0  262993  263001  263007  263011  263017  263019  263023  263029  263031  263037  263043  263047  263049  263053  263059  263061  263067  263071  263073  263077  263079  263083  263085  263087  263088  263089  263091  263092  263093  263095  263097  263101  263103  263107  263109  263113  263119  263121  263127  263131  263133  263137  263143  263149  263151  263157  263161  263163  263169  263173  263179  263187  266669 

科目: 来源: 题型:

【题目】一个20行若干列的0,1数阵满足各列互不相同且任意两列中同一行都取1的行数不超过2.求当列数最多时,数阵中1的个数的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面a内作菱形ABCD,边长为1,BAD=60°,再在a的上方,分别以ABDCBD为底面安装上相同的正棱锥P-ABDQ-CBD,APB=90°.

(1)求二面角P-BD-Q的余弦值;

(2)求点P到平面QBD的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,.

1)求证:平面平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=4sincos x+.

(1)求函数f(x)的最小正周期和单调递增区间;

(2)若函数g(x)=f(x)-m区间在上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知公差不等于的正项等差数列的前项和为,递增等比数列的前项和为.

1)求满足的最小值;

2)求数列的前项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正多面体共有5种,即正四面体、正六面体、正八面体、正十二面体和正二十面体.任一个正多面体都有内切球和外接球,若一个半径为1的球既是一个正四面体的内切球,又是一个正六面体的外接球,则这两个多面体的顶点之间的最短距离为(

A.1B.1C.21D.2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合是满足下列性质的函数的全体:在定义域内存在实数,使得成立.

1)已知函数,判断 函数是否属于集合

2)若函数属于集合,试求实数的取值范围;

3 证明函数属于集合.

查看答案和解析>>

科目: 来源: 题型:

【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:

(年)

2

3

4

5

6

(万元)

1

2.5

3

4

4.5

参考公式:.

(1)若知道呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?

查看答案和解析>>

科目: 来源: 题型:

【题目】我校高一年级某研究小组经过调查发现:提高北环隧道的车辆通行能力可有效改善交通状况,在一般情况下,隧道内的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米,车流密度指每千米道路上车辆的数量)的函数.当隧道内的车流密度达到210/千米时,将造成堵塞,此时车流速度为0;当车流密度不超过30/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度的一次函数.

1)求函数的表达式;

2)当车流密度为多大时,车流量(单位时间内通过某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

,试证明:当时,

若对任意均有两个极值点

试求b应满足的条件;

时,证明:

查看答案和解析>>

同步练习册答案