科目: 来源: 题型:
【题目】某工厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=
x2+10x(万元).当年产量不小于80千件时,C(x)=51x+
-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】某种新产品投放市场一段时间后,经过调研获得了时间
(天数)与销售单价
(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根据散点图判断,
与
哪一个更适宜作价格
关于时间
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若该产品的日销售量
(件)与时间
的函数关系为
(
),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)
附:对于一组数据
,
,
,
,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出
人,并将这
人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示:
![]()
(1)求
的值;
(2)求出样本的平均数(同一组数据用该区间的中点值作代表);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取
人,再从这
人中随机抽取
人进行问卷调查,求第2组中抽到
人的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】[2019·清远期末]一只红铃虫的产卵数
和温度
有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:
温度 | 20 | 25 | 30 | 35 |
产卵数 | 5 | 20 | 100 | 325 |
![]()
(1)根据散点图判断
与
哪一个更适宜作为产卵数
关于温度
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程(数字保留2位小数);
(3)要使得产卵数不超过50,则温度控制在多少
以下?(最后结果保留到整数)
参考数据:
,
,
,
,
,
,
,
,
,
,
| 5 | 20 | 100 | 325 |
| 1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角梯形
中,
,
,
,
,
,
为线段
(含端点)上的一个动点.设
,
,对于函数
,下列描述正确的是( )
A.
的最大值和
无关B.
的最小值和
无关
C.
的值域和
无关D.
在其定义域上的单调性和
无关
查看答案和解析>>
科目: 来源: 题型:
【题目】(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系
中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直角梯形
与等腰直角三角形
所在的平面互相垂直.
,
,
.
![]()
(1)求证:
;
(2)求证:平面
平面
;
(3)线段
上是否存在点
,使
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com