相关习题
 0  263077  263085  263091  263095  263101  263103  263107  263113  263115  263121  263127  263131  263133  263137  263143  263145  263151  263155  263157  263161  263163  263167  263169  263171  263172  263173  263175  263176  263177  263179  263181  263185  263187  263191  263193  263197  263203  263205  263211  263215  263217  263221  263227  263233  263235  263241  263245  263247  263253  263257  263263  263271  266669 

科目: 来源: 题型:

【题目】已知函数).

1)讨论函数在定义域内的极值点的个数;

2)若函数处取得极值,0),恒成立,求实数的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

1)试从上述五个式子中选择一个,求出这个常数;

2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】下图是某市年至年环境基础设施投资额(单位:亿元)的条形图.

(1)若从年到年的五年中,任意选取两年,则这两年的投资额的平均数不少于亿元的概率;

(2)为了预测该市年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据年至年的数据(时间变量的值依次为)建立模型①:;根据年至年的数据(时间变量的值依次为)建立模型②:

(i)分别利用这两个模型,求该地区年的环境基础设施投资额的预测值;

(ii)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】太极是中国古代的哲学术语,意为派生万物的本源.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太极图形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理.太极图形展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆的图象分割为两个对称的鱼形图案,图中的两个一黑一白的小圆通常称为“鱼眼”,已知小圆的半径均为,现在大圆内随机投放一点,则此点投放到“鱼眼”部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆,直线,直线过点,倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)写出直线与圆的交点极坐标及直线的参数方程;

(2)设直线与圆交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数其中,设导函数.

Ⅰ)设,若恒成立,求的范围

Ⅱ)设函数的零点为函数的极小值点为,当时,求证.

查看答案和解析>>

科目: 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到列联表:

喜欢游泳

不喜欢游泳

合计

男生

40

女生

30

合计

100

且已知在100个人中随机抽取1人,抽到喜欢游泳的学生的概率为

1)请完成上面的列联表;

2)根据列联表的数据,是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由.

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案