科目: 来源: 题型:
【题目】已知抛物线的顶点在坐标原点,其焦点在轴正半轴上,为直线上一点,圆与轴相切(为圆心),且,关于点对称.
(1)求圆和抛物线的标准方程;
(2)过的直线交圆于,两点,交抛物线于,两点,求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目: 来源: 题型:
【题目】杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.
(1)求曲线的极坐标方程,并化为直角坐标方程;
(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线的参数方程为(为参数),,曲线的极坐标方程为.
(1)求直线的普通方程及曲线的直角坐标方程;
(2)若直线与曲线交于、两点,设、中点为,求弦长以及.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气数值的影响,进而唤醒全市人民的环保节能意识.对该市取暖季烧煤天数与空气数值不合格的天数进行统计分析,得出表数据:
(天) | |||||
(天) |
(1)以统计数据为依据,求出关于的线性回归方程;
(2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为时空气数值不合格的天数.
参考公式:,.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地区2020年清明节前后3天每天下雨的概率为70%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率:用随机数(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:
332 714 740 945 593 468 491 272 073 445
992 772 951 431 169 332 435 027 898 719
(1)求出的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;
(2)从2011年开始到2019年该地区清明节当天降雨量(单位:)如下表:(其中降雨量为0表示没有下雨).
时间 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
降雨量 | 29 | 28 | 26 | 27 | 25 | 23 | 24 | 22 | 21 |
经研究表明:从2011年开始至2020年, 该地区清明节有降雨的年份的降雨量与年份成线性回归,求回归直线,并计算如果该地区2020年()清明节有降雨的话,降雨量为多少?(精确到0.01)
参考公式:.
参考数据:,,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com