相关习题
 0  263169  263177  263183  263187  263193  263195  263199  263205  263207  263213  263219  263223  263225  263229  263235  263237  263243  263247  263249  263253  263255  263259  263261  263263  263264  263265  263267  263268  263269  263271  263273  263277  263279  263283  263285  263289  263295  263297  263303  263307  263309  263313  263319  263325  263327  263333  263337  263339  263345  263349  263355  263363  266669 

科目: 来源: 题型:

【题目】如图,在直三棱柱中,为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为,求异面直线所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:

(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;

(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?

优质品

非优质品

合计

合计

(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;

(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】某科研小组有20个不同的科研项目,每年至少完成一项。有下列两种完成所有科研项目的计划:

A计划:第一年完成5项,从第一年开始,每年完成的项目不得少于次年,直到全部完成为止;

B计划:第一年完成项数不限,从第一年开始,每年完成的项目不得少于次年,恰好5年完成所有项目。

那么,按照A计划和B计划所安排的科研项目不同完成顺序的方案数量

A. 按照A计划完成的方案数量多

B. 按照B计划完成的方案数量多

C. 按照两个计划完成的方案数量一样多

D. 无法判断哪一种计划的方案数量多

查看答案和解析>>

科目: 来源: 题型:

【题目】在点处的切线.

(1)求证:

(2)设,其中.若恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:

优秀

非优秀

总计

甲班

10

b

乙班

c

30

总计105

已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是(

参考公式:

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A.列联表中c的值为30b的值为35

B.列联表中c的值为15b的值为50

C.根据列联表中的数据,若按95%的可靠性要求,能认为成绩与班级有关系

D.根据列联表中的数据,若按95%的可靠性要求,不能认为成绩与班级有关系

查看答案和解析>>

科目: 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2α4cosα=0.已知直线l的参数方程为为参数),点M的直角坐标为.

1)求直线l和曲线C的普通方程;

2)设直线l与曲线C交于AB两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图1直角三角形ACB中,,点的中点,,将沿折起,使面,如图2.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点P(-1,0),设不垂直于x轴的直线l与抛物线y2=2x交于不同的两点AB,若x轴是∠APB的角平分线,则直线l一定过点

A. ,0) B. (1,0) C. (2,0) D. (-2,0)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图 1,在直角梯形中, ,且.现以为一边向外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 的中点,如图 2.

(1)求证: 平面

(2)求证: 平面

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )

(参考数据:

A. B.

C. D.

查看答案和解析>>

同步练习册答案