科目: 来源: 题型:
【题目】已知正整数
,设长方形
的边长
,
,边
、
、
上的点
,
…,
,
,
…,
,
,
,
,…,
分别满足
,
,
.
(1)对于
,2,…,
,求
与
、
与
的交点所在的二次曲线
的方程;
(2)若
的延长线上的点
,
,…,
满足
,对于
,2,…,
,求
与
的交点所在的二次曲线
的方程;
(3)设在二次曲线
上到
的距离最大的点为
,求
与二次曲线
上的点的距离的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一辆汽车从起点
出发开到终点
(不允许反向行驶),
的距离为2007.在沿途设立了一些车站,所有到
的距离是100的倍数的地方都设立了车站(这些车站的集合设为
),所有到
的距离是223的倍数的地方也都设立了车站(这些车站的集合设为
).该车在行驶途中的每次停车,要么在距其最近的集合
中的车站停车,要么在距其最近的集合
中的车站停车.则由
驶到
的所有可能的停车方式的数目
在区间( )中.
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分10分)[选修4-4,极坐标与参数方程选讲]
在直角坐标系x0y中,曲线C1的参数方程为
(
为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为p=4sin9
(1)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)已知曲线C3的极坐标方程为
=α,(0<α<x,p∈R),点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4
,求实数α的值
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:如果数列
的任意连续三项均能构成一个三角形的三边长,则称
为“三角形”数列,对于“三角形”数列
,如果函数
使得
仍为一个“三角形”数列,则称
是数列
的“保三角形函数”
.
(1)已知
是首项为2,公差为1的等差数列,若
是数列
的“保三角形函数”,求k的取值范围;
(2)已知数列
的首项为2010,
是数列
的前n项和,且满足
,证明
是“三角形”数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线
与圆
相交于不同的两点
,
.
(1)求圆
的圆心坐标;
(2)求线段
的中点
的轨迹
的方程;
(3)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,已知圆
圆心为
,过点
且斜率为
的直线与圆
相交于不同的两点
、
.
(
)求
的取值范围;
(
)是否存在常数
,使得向量
与
共线?如果存在,求
值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年11月6日-11日,第十二届中国国际航空航天博览会在珠海举行。在航展期间,从珠海市区开车前往航展地有甲、乙两条路线可走,已知每辆车走路线甲堵车的概率为
,走路线乙堵车的概率为p,若现在有A,B两辆汽车走路线甲,有一辆汽车C走路线乙,且这三辆车是否堵车相互之间没有影响。
(1)若这三辆汽车中恰有一辆汽车被堵的概率为
,求p的值。
(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数X的分布列和数学期望。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com