相关习题
 0  263228  263236  263242  263246  263252  263254  263258  263264  263266  263272  263278  263282  263284  263288  263294  263296  263302  263306  263308  263312  263314  263318  263320  263322  263323  263324  263326  263327  263328  263330  263332  263336  263338  263342  263344  263348  263354  263356  263362  263366  263368  263372  263378  263384  263386  263392  263396  263398  263404  263408  263414  263422  266669 

科目: 来源: 题型:

【题目】已知数列的前n项和为.

1)求数列的通项公式;

2)记.若对任意正整数n恒成立,求k的取值范围;

3)已知集合.若以a为首项,a为公比的等比数列前n项和记为,问是否存在实数a,使得对于任意的均有.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查。现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时)。调查结果如下表:

A类

B类

C类

男生

x

5

3

女生

y

3

3

(I)求出表中x,y的值;

(II)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;

男生

女生

总计

不参加课外阅读

参加课外阅读

总计

(III)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的数学期望。

附:K2=)

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=

(I)点E在线段PB上,满足CE//平面PAD,求的值。

(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率是椭圆上一点.

1)求椭圆的方程;

2)若直线的斜率为,且直线交椭圆两点,点关于原点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:

①2018年9~12月,该市邮政快递业务量完成件数约1500万件;

②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;

③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年寒假,因为新冠疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有人对线上教学满意,女生中有名表示对线上教学不满意.

1)完成列联表,并回答能否有的把握认为对线上教学是否满意 与性别有关

态度

性别

满意

不满意

合计

男生

女生

合计

100

2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).是曲线上的动点,将线段点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(I)求曲线的极坐标方程;

(II)在(I)的条件下,若射线与曲线分别交于两点(除极点外),且有定点,求面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】销售某种活海鲜,根据以往的销售情况,按日需量(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为元.

(I)求关于的函数关系式;

(II)结合直方图估计利润不小于800元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆A:(x+1)2+y2=16,圆C过点B(1,0)且与圆A相切,设圆心C的轨迹为曲线E

(Ⅰ)求曲线E的方程;

(Ⅱ)过点B作两条互相垂直的直线l1l2,直线l1E交于MN两点,直线l2与圆A交于PQ两点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥PABC中,AB1BC2ACPCPAPBE是线段BC的中点.

1)求点C到平面APE的距离d

2)求二面角PEAB的余弦值.

查看答案和解析>>

同步练习册答案