科目: 来源: 题型:
【题目】已知数列
的前n项和为
,
.
(1)求数列
的通项公式;
(2)记
.若对任意正整数n,
恒成立,求k的取值范围;
(3)已知集合
.若以a为首项,a为公比的等比数列前n项和记为
,问是否存在实数a,使得对于任意的
均有
.若存在,求出a的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查。现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时)。调查结果如下表:
A类 | B类 | C类 | |
男生 | x | 5 | 3 |
女生 | y | 3 | 3 |
(I)求出表中x,y的值;
(II)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;
男生 | 女生 | 总计 | |
不参加课外阅读 | |||
参加课外阅读 | |||
总计 |
(III)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的数学期望。
附:K2=
)
P(K2≥k0) | 0.10 | 0.01 | |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2
,BC=
,CD=PC=
。
![]()
(I)点E在线段PB上,满足CE//平面PAD,求
的值。
(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率
,
是椭圆
上一点.
(1)求椭圆
的方程;
(2)若直线
的斜率为
,且直线
交椭圆
于
、
两点,点
关于原点的对称点为
,点
是椭圆
上一点,判断直线
与
的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:
![]()
![]()
①2018年9~12月,该市邮政快递业务量完成件数约1500万件;
②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;
③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取
名学生对线上教学进行调查,其中男生与女生的人数之比为
,抽取的学生中男生有
人对线上教学满意,女生中有
名表示对线上教学不满意.
(1)完成
列联表,并回答能否有
的把握认为“对线上教学是否满意 与性别有关”;
态度 性别 | 满意 | 不满意 | 合计 |
男生 | |||
女生 | |||
合计 | 100 |
(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取
名学生,再在这
名学生中抽取
名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
附:
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).
是曲线
上的动点,将线段
绕
点顺时针旋转
得到线段
,设点
的轨迹为曲线
.以坐标原点
为极点,
轴正半轴为极轴建立极坐标系.
(I)求曲线
,
的极坐标方程;
(II)在(I)的条件下,若射线
与曲线
,
分别交于
两点(除极点外),且有定点
,求
面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】销售某种活海鲜,根据以往的销售情况,按日需量
(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为
元.
![]()
(I)求
关于
的函数关系式;
(II)结合直方图估计利润
不小于800元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆A:(x+1)2+y2=16,圆C过点B(1,0)且与圆A相切,设圆心C的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)过点B作两条互相垂直的直线l1,l2,直线l1与E交于M,N两点,直线l2与圆A交于P,Q两点,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在三棱锥P﹣ABC中,AB=1,BC=2,AC
,PC
,PA
,PB
,E是线段BC的中点.
![]()
(1)求点C到平面APE的距离d;
(2)求二面角P﹣EA﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com