科目: 来源: 题型:
【题目】学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若射线
(
)与直线
和曲线
分别交于
,
两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图为我国数学家赵爽
约3世纪初
在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则
区域涂色不相同的概率为
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
上有一动点
,过点
作直线
垂直于
轴,动点
在
上,且满足
(
为坐标原点),记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知定点
,
,
为曲线
上一点,直线
交曲线
于另一点
,且点
在线段
上,直线
交曲线
于另一点
,求
的内切圆半径
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形
(边长为2个单位)的顶点
处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为
,则棋子就按逆时针方向行走
个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点
处的所有不同走法共有( )
![]()
A. 22种 B. 24种 C. 25种 D. 27种
查看答案和解析>>
科目: 来源: 题型:
【题目】记无穷数列
的前n项中最大值为
,最小值为
,令
,数列
的前n项和为
,数列
的前n项和为
.
(1)若数列
是首项为2,公比为2的等比数列,求
;
(2)若数列
是等差数列,试问数列
是否也一定是等差数列?若是,请证明;若不是,请举例说明;
(3)若
,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】将杨辉三角中的奇数换成1,偶数换成0,便可以得到如图的“0-1三角”.在“
三角”中,从第1行起,设第n
次出现全行为1时,1的个数为
,则
等于( )
![]()
A.13B.14C.15D.16
查看答案和解析>>
科目: 来源: 题型:
【题目】已知甲箱中装有3个红球,2个黑球,乙箱中装有2个红球,3个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,规定顾客购物1000元以上,可以参与抽奖一次,设奖规则如下:每次分别从以上两个箱子中各随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,奖金300元;摸出的球中有3个红球,则获得二等奖,奖金200元;摸出的球中有2个红球,则获得三等奖,奖金100元;其他情况不获奖,每次摸球结束后将球放回原箱中.
(1)求在1次摸奖中,获得二等奖的概率;
(2)若3人各参与摸奖1次,求获奖人数X的数学期望
;
(3)若商场同时还举行打9折促销活动,顾客只能在两项促销活动中任选一项参与.假若你购买了价值1200元的商品,那么你选择参与哪一项活动对你有利?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com