科目: 来源: 题型:
【题目】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.
求证:平面PON;
求三棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为一等品;指标在区间的为二等品,现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:
若从甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取5件,再从这5件零件中随机抽取3件,求至少有1件一等品的概率;
该厂所生产这种零件,若是一等品每件可售50元,若是二等品每件可售20元甲种生产方式每生产一件零件无论是一等品还是二等品的成本为10元,乙种生产方式每生产一件零件无论是一等品还是二等品的成本为18元将频率分布直方图中的频率视作概率,用样本估计总体比较在甲、乙两种不同生产方式下,哪种生产方式生产的零件所获得的平均利润较高?
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为,点的极坐标为,以极点为极点,以轴正半轴为极轴建立极坐标系.
(1)曲线的直角坐标方程和点的直角坐标;
(2)若过点且倾斜角为的直线,点为曲线上任意一点,求点到直线的最小距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:
(1)人都射中目标的概率; (2)人中恰有人射中目标的概率;
(3)人至少有人射中目标的概率; (4)人至多有人射中目标的概率?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平行四边形中,,,,是EA的中点(如图1),将沿CD折起到图2中的位置,得到四棱锥是.
(1)求证:平面PDA;
(2)若PD与平面ABCD所成的角为.且为锐角三角形,求平面PAD和平面PBC所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点为,离心率为,点在椭圆上,且的面积的最大值为.
(1)求椭圆的方程;
(2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com