精英家教网 > 高中数学 > 题目详情

【题目】在平行四边形中,EA的中点(如图1),将沿CD折起到图2的位置,得到四棱锥是

1)求证:平面PDA

2)若PD与平面ABCD所成的角为.且为锐角三角形,求平面PAD和平面PBC所成锐二面角的余弦值.

【答案】1)证明见解析; 2

【解析】

1)证明,即可证明线面垂直;

2)由线面角求得,以中点为坐标原点建立直角坐标系,由向量法求得二面角的余弦值.

1)将沿CD折起过程中,平面PDA成立.证明如下:

EA的中点,

中,由余弦定理得,

为等腰直角三角形且

平面PDA

2)由(1)知平面PDA平面ABCD

平面平面ABCD

为锐角三角形,

在平面ABCD内的射影必在棱AD上,记为O,连接PO平面ABCD

PD与平面ABCD所成的角,

为等边三角形,OAD的中点,

故以O为坐标原点,过点O且与CD平行的直线为x轴,

DA所在直线为y轴,OP所在直线为z轴建立如图所示的空间直角坐标系,

x轴与BC交于点M

易知

平面PDA

可取平面PDA的一个法向量

设平面PBC的法向量

,即

,则为平面PBC的一个法向量,

设平面PAD和平面PBC所成的角为

由图易知为锐角,

平面PAD和平面PBC所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=()

(1)当cos时,求小路AC的长度;

(2)当草坪ABCD的面积最大时,求此时小路BD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,取得极值,求的值并判断是极大值点还是极小值点;

当函数有两个极值点,且时,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴的椭圆C离心率e=A是左顶点,E20

1)求椭圆C的标准方程:

2)若斜率不为0的直线l过点E,且与椭圆C相交于点PQ两点,求三角形APQ面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年11月21日,意大利奢侈品牌“”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:得到如图所示的频率分布直方图;

并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.

一般关注

强烈关注

合计

45

10

55

合计

100

(1)在答题卡上补全列联表中数据;并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?

(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.

参考公式及数据:

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示甲,在四边形ABCD中,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点OMN分别为棱ACPAAD的中点.

求证:平面PON

求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);

(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;

(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,点M是外一点,BM=2CM=2,则AM的最大值与最小值的差为____________

查看答案和解析>>

同步练习册答案