相关习题
 0  263260  263268  263274  263278  263284  263286  263290  263296  263298  263304  263310  263314  263316  263320  263326  263328  263334  263338  263340  263344  263346  263350  263352  263354  263355  263356  263358  263359  263360  263362  263364  263368  263370  263374  263376  263380  263386  263388  263394  263398  263400  263404  263410  263416  263418  263424  263428  263430  263436  263440  263446  263454  266669 

科目: 来源: 题型:

【题目】电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为体育迷”.

(1)根据已知条件完成下面的22列联表,并据此资料你是否认为体育迷与性别有关?

非体育迷

体育迷

合计

10

55

合计

(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的体育迷人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).

附:.

P(K2k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】下边的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的股价波动较大;④两只般票在全年都处于上升趋势.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:),身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”.

1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;

2)若从身高以上(包括)的志愿者中选出男、女各一人,设这2人身高相差),求的分布列和数学期望(均值).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】有报道称,据南方科技大学、上海交大等8家单位的最新研究显示:ABOAB血型与COVID19易感性存在关联,具体调查数据统计如图:

根据以上调查数据,则下列说法错误的是(

A.与非O型血相比,O型血人群对COVID19相对不易感,风险较低

B.与非A型血相比,A型血人群对COVID19相对易感,风险较高

C.O型血相比,B型、AB型血人群对COVID19的易感性要高

D.A型血相比,非A型血人群对COVID19都不易感,没有风险

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中, .

(1)证明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位为了响应疫情期间有序复工复产的号召,组织从疫区回来的甲、乙、丙、丁4名员工进行核酸检测,现采用抽签法决定检测顺序,在员工甲不是第一个检测,员工乙不是最后一个检测的条件下,员工丙第一个检测的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线的极坐标方程为

求曲线的极坐标方程和曲线的直角坐标方程;

若射线l与曲线的交点分别为AB异于原点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

的单调区间和极值;

时,证明:对任意的,函数有且只有一个零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的左焦点为,且点C上.

C的方程;

设点P关于x轴的对称点为点不经过P点且斜率为的直线1C交于AB两点,直线PAPB分别与x轴交于点MN,求证:

查看答案和解析>>

同步练习册答案