科目: 来源: 题型:
【题目】为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
![]()
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(1)根据已知条件完成下面的
列联表,并据此资料我们能否有
的把握认为“歌迷”与性别有关?
![]()
(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
![]()
附:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀 | 非优秀 | 总计 | |
甲班 | 10 |
| |
乙班 |
| 30 | |
总计 |
|
已知在全部105人中随机抽取1人,成绩优秀的概率为
,则下列说法正确的是( )
A. 列联表中
的值为30,
的值为35
B. 列联表中
的值为15,
的值为50
C. 根据列联表中的数据,若按
的可靠性要求,能认为“成绩与班级有关系”
D. 根据列联表中的数据,若按
的可靠性要求,不能认为“成绩与班级有关系”
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
:
的焦点为
,点
在抛物线
上,
为坐标原点,
,且
.
(1)求抛物线
的方程;
(2)过焦点
,且斜率为1的直线
与抛物线
交于
,
两点,线段
的垂直平分线
交抛物线
于
,
两点,求四边形
的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]:在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
,
的直角坐标方程;
(2)判断曲线
,
是否相交,若相交,请求出交点间的距离;若不相交,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】沙漏是我国古代的一种计时工具,是用两个完全相同的圆锥顶对顶叠放在一起组成的(如图).在一个圆锥中装满沙子,放在上方,沙子就从顶点处漏到另一个圆锥中,假定沙子漏下来的速度是恒定的.已知一个沙漏中沙子全部从一个圆锥中漏到另一个圆锥中需用时10分钟.那么经过5分钟后,沙漏上方圆锥中的沙子的高度与下方圆锥中的沙子的高度之比是(假定沙堆的底面是水平的)( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆
(
)的离心率为
,圆
与
轴正半轴交于点
,圆
在点
处的切线被椭圆
截得的弦长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设圆
上任意一点
处的切线交椭圆
于点
,试判断
是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图(1),等腰梯形
,
,
,
,
、
分别是
的两个三等分点.若把等腰梯形沿虚线
、
折起,使得点
和点
重合,记为点
,如图(2).
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在R上的函数f(x)满足:对任意
都有
,且当x>0时,
.
(1)求
的值,并证明
为奇函数;
(2)判断函数
的单调性,并证明;
(3)若
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com