【题目】设椭圆
(
)的离心率为
,圆
与
轴正半轴交于点
,圆
在点
处的切线被椭圆
截得的弦长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设圆
上任意一点
处的切线交椭圆
于点
,试判断
是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
【答案】(1)
; (2)见解析.
【解析】
(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可。(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示
,结合三角形相似,证明结论,即可。
(Ⅰ)设椭圆的半焦距为
,由椭圆的离心率为
知,
,
∴椭圆
的方程可设为
.
易求得
,∴点
在椭圆上,∴
,
解得
,∴椭圆
的方程为
.
(Ⅱ)当过点
且与圆
相切的切线斜率不存在时,不妨设切线方程为
,由(Ⅰ)知,
,
,∴
.
当过点
且与圆
相切的切线斜率存在时,可设切线的方程为
,
,
∴
,即
.
联立直线和椭圆的方程得
,
∴
,得
.
∵
,
∴
,
![]()
,
∴
.
综上所述,圆
上任意一点
处的切线交椭圆
于点
,都有
.
在
中,由
与
相似得,
为定值.
科目:高中数学 来源: 题型:
【题目】已知焦点在x轴的椭圆C:
离心率e=
,A是左顶点,E(2,0)
(1)求椭圆C的标准方程:
(2)若斜率不为0的直线l过点E,且与椭圆C相交于点P,Q两点,求三角形APQ面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)当a=1时,写出
的单调递增区间(不需写出推证过程);
(Ⅱ)当x>0时,若直线y=4与函数
的图像交于A,B两点,记
,求
的最大值;
(Ⅲ)若关于x的方程
在区间(1,2)上有两个不同的实数根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为
、
、
、
、
五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:
![]()
(1)试估算该校高三年级学生获得成绩为
的人数;
(2)若等级
、
、
、
、
分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?
(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为
的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com