科目: 来源: 题型:
【题目】我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为
,
,
,则鸡翁、鸡母、鸡雏的数量即为方程组
的解.其解题过程可用框图表示如下图所示,则框图中正整数
的值为 ______.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
是双曲线
的左右焦点,其渐近线为
,且其右焦点与抛物线
的焦点
重合.
(1)求双曲线
的方程;
(2)过
的直线
与
相交于
两点,直线
的法向量为
,且
,求
的值
(3)在(2)的条件下,若双曲线
在第四象限的部分存在一点
满足
,求
的值及
的面积
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,底面为矩形的四棱锥
,
底面
,
,
,
是
的中点.
![]()
(1)求四棱锥
的体积;
(2)求
与面
所成角;
(3)在
边上是否存在一点
,使得
到平面
的距离为
?若存在,求出;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的右焦点为
,坐标原点为
.椭圆
的动弦
过右焦点
且不垂直于坐标轴,
的中点为
,过
且垂直于线段
的直线交射线
于点![]()
(I)证明:点
在直线
上;
(Ⅱ)当四边形
是平行四边形时,求
的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中,正确的序号是_____
①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;
②过球面上任意两点的大圆有且只有一个;
③直四棱柱是直平行六面体;
④
为异面直线,则过
且与
平行的平面有且仅有一个;
⑤两相邻侧面所成角相等的棱锥是正棱锥.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),
表示购机的同时购买的维修服务次数.
(1)若
=10,求y与x的函数解析式;
(2)若要求“维修次数不大于
”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
查看答案和解析>>
科目: 来源: 题型:
【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段
的长度为a,在线段
上取两个点
,
,使得
,以
为一边在线段
的上方做一个正六边形,然后去掉线段
,得到图2中的图形;对图2中的最上方的线段
作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
![]()
记第
个图形(图1为第1个图形)中的所有线段长的和为
,现给出有关数列
的四个命题:
①数列
是等比数列;
②数列
是递增数列;
③存在最小的正数
,使得对任意的正整数
,都有
;
④存在最大的正数
,使得对任意的正整数
,都有
.
其中真命题的序号是________________(请写出所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com