科目: 来源: 题型:
【题目】已知数列
中,
,
,
.
(1)证明:数列
是等比数列,并求数列
的通项公式;
(2)在数列
中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若
且
,
,求证:使得
,
,
成等差数列的点列
在某一直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知矩阵
(
)满足
(I为单位矩阵).
(1)求m的值;
(2)设
,
.矩阵变换
可以将点P变换为点Q.当点P在直线
上移动时,求经过矩阵A变换后点Q的轨迹方程.
(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,求出所有这样的直线;若不存在,则说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
是抛物线
上一点,
为
的焦点.
![]()
(1)若
,
是
上的两点,证明:
,
,
依次成等比数列.
(2)过
作两条互相垂直的直线与
的另一个交点分别交于
,
(
在
的上方),求向量
在
轴正方向上的投影的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】若各项均不为零的数列
的前
项和为
,数列
的前
项和为
,且
,
.
(1)证明数列
是等比数列,并求
的通项公式;
(2)设
,是否存在正整数
,使得
对于
恒成立.若存在,求出正整数
的最小值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.
![]()
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.
附注:参考数据:
参考公式:相关系数
,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程
中斜率与截距的最小二乘估计公式分别为
=
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
,直线
是圆
与圆
的公共弦
所在直线方程,且圆
的圆心在直线
上.
(1)求公共弦
的长度;
(2)求圆
的方程;
(3)过点
分别作直线
,
,交圆
于
,
,
,
四点,且
,求四边形
面积的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com