科目: 来源: 题型:
【题目】一个三角形数表按如下方式构成(如图:其中项数
):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:
;
为数表中第
行的第
个数.
…
![]()
…![]()
…![]()
……
(1)求第2行和第3行的通项公式
和
;
(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求
关于
的表达式;
(3)若
,
,试求一个等比数列
,使得
,且对于任意的
,均存在实数
,当
时,都有
.
查看答案和解析>>
科目: 来源: 题型:
【题目】教材曾有介绍:圆
上的点
处的切线方程为
。我们将其结论推广:椭圆
上的点
处的切线方程为
,在解本题时可以直接应用。已知,直线
与椭圆
有且只有一个公共点.
![]()
(1)求
的值;
(2)设
为坐标原点,过椭圆
上的两点
、
分别作该椭圆的两条切线
、
,且
与
交于点
。当
变化时,求
面积的最大值;
(3)在(2)的条件下,经过点
作直线
与该椭圆
交于
、
两点,在线段
上存在点
,使
成立,试问:点
是否在直线
上,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:
![]()
(1)根据频率分布直方图计算该种蔬果日需求量的平均数
(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为
公斤
,利润为
元.求
关于
的函数关系式,并结合频率分布直方图估计利润
不小于1750元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以椭圆长、短轴四个端点为顶点为四边形的面积为
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为
、
,当动点
在定直线
上运动时,直线
分别交椭圆于两点
、
,求四边形
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于
的偶数可以表示为两个素数的和”,如
.现从不超过
的素数中,随机选取两个不同的数(两个数无序).(注:不超过
的素数有
,
,
,
,
,
)
(1)列举出满足条件的所有基本事件;
(2)求“选取的两个数之和等于
”事件发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
![]()
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;
(2)已知这种产品的年利润z与x,y的关系为
,根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:回归方程
中的斜率和截距的最小二乘估计公式分别为
![]()
参考数据:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com