科目: 来源: 题型:
【题目】在直角坐标系
中,曲线C的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系中,直线
的极坐标方程为
.
(Ⅰ)求C的普通方程和直线
的倾斜角;
(Ⅱ)设点
(0,2),
和
交于
两点,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面上的线段
及点
,任取
上一点
,线段
长度的最小值称为点
到线段
的距离,记作
.请你写出到两条线段
,
距离相等的点的集合
,
,
,其中
,
,
,
,
,
是下列两组点中的一组.对于下列两种情形,只需选做一种,满分分别是① 3分;② 5分.①
,
,
,
;②
,
,
,
.你选择第_____种情形,到两条线段
,
距离相等的点的集合
_____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两位同学分别做下面这道题目:在平面直角坐标系中,动点
到
的距离比
到
轴的距离大
,求
的轨迹.甲同学的解法是:解:设
的坐标是
,则根据题意可知
,化简得
; ①当
时,方程可变为
;②这表示的是端点在原点、方向为
轴正方向的射线,且不包括原点; ③当
时,方程可变为
; ④这表示以
为焦点,以直线
为准线的抛物线;⑤所以
的轨迹为端点在原点、方向为
轴正方向的射线,且不包括原点和以
为焦点,以直线
为准线的抛物线. 乙同学的解法是:解:因为动点
到
的距离比
到
轴的距离大
. ①如图,过点
作
轴的垂线,垂足为
. 则
.设直线
与直线
的交点为
,则
; ②即动点
到直线
的距离比
到
轴的距离大
; ③所以动点
到
的距离与
到直线
的距离相等;④所以动点
的轨迹是以
为焦点,以直线
为准线的抛物线; ⑤甲、乙两位同学中解答错误的是________(填“甲”或者“乙”),他的解答过程是从_____处开始出错的(请在横线上填写① 、②、③、④ 或⑤ ).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下列有关命题的说法正确的是__________________.
①命题“若x2-3x+2=0,则x=1”的逆否命题为:若x≠1,则x2-3x+2≠0
②x=1是x2-3x+2=0的充分不必要条件
③若p∧q为假命题,则p,q均为假命题
④对于命题p:x∈R,使得x2+x+1<0,则非p:x∈R, 均有x2+x+1≥0
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左右焦点分别为F1,F2,离心率为
,设过点F2的直线l被椭圆C截得的线段为MN,当l⊥x轴时,|MN|=3.
(1)求椭圆C的标准方程;
(2)在x轴上是否存在一点P,使得当l变化时,总有PM与PN所在的直线关于x轴对称?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.
![]()
(1)求证:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点F是拋物线C:y2=2px(p>0)的焦点,点M(x0,1)在C上,且|MF|=
.
(1)求p的值;
(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点,证明:直线AM与直线BM的斜率之积为常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com