科目: 来源: 题型:
【题目】已知曲线上一动点P(x,y)(x>0)到定点F(
,0)的距离与它到直线l:x
的距离的比是
.
(1)求动点P的轨迹E的方程;
(2)若M是曲线E上的一个动点,直线l′:y=x+4,求点M到直线l′的距离的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱
中,侧面
底面
,四边形
是边长为2的菱形,
,
,
,E,F分别为AC,
的中点.
![]()
(1)求证:直线EF∥平面
;
(2)设
分别在侧棱
,
上,且
,求平面BPQ分棱柱所成两部分的体积比.
查看答案和解析>>
科目: 来源: 题型:
【题目】在底面是正三角形、侧棱垂直于底面的三棱柱ABC﹣A1B1C1中,底面边长为a,侧棱长为2a,点M是A1B1的中点.
![]()
(1)证明:MC1⊥AB1.
(2)求直线AC1与侧面BB1C1C所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系
中,曲线
的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)若
与
有且仅有三个公共点,求
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频率分布及支持“生育二胎”人数如下表:
年龄 |
|
|
|
|
|
|
频率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
![]()
(2)若对年龄在
的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题p:“方程:
表示焦点在x轴上的双曲线”;命题q:“关于x的不等式x2+2ax+1≥0在R上恒成立”.
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线
的焦点F为圆C:
的圆心.
求抛物线的方程与其准线方程;
直线l与圆C相切,交抛物线于A,B两点;
若线段AB中点的纵坐标为
,求直线l的方程;
求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】记数列
的前n项和为
,其中所有奇数项之和为
,所有偶数项之和为![]()
若
是等差数列,项数n为偶数,首项
,公差
,且
,求
;
若数列
的首项
,满足
,其中实常数
,且
,请写出满足上述条件常数t的两个不同的值和它们所对应的数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com