科目: 来源: 题型:
【题目】一半径为
的水轮,水轮圆心
距离水面2
,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点
从水中浮现时开始计时,即从图中点
开始计算时间.
![]()
(1)当
秒时点
离水面的高度_________;
(2)将点
距离水面的高度
(单位:
)表示为时间
(单位:
)的函数,则此函数表达式为_______________ .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动圆
经过定点
,且与直线
相切,设动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设过点
的直线
,
分别与曲线
交于
,
两点,直线
,
的斜率存在,且倾斜角互补,证明:直线
的斜率为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区
四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
学校 |
|
|
|
|
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计
学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从
两校没有参与“创城”活动的同学中随机抽取2人,求恰好
两校各有1人没有参与“创城”活动的概率是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:
![]()
(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的2
2列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
参考数据:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆
,
分别为其左、右焦点,过
的直线与此椭圆相交于
两点,且
的周长为8,椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在平面直角坐标系
中,已知点
与点
,过
的动直线
(不与
轴平行)与椭圆相交于
两点,点
是点
关于
轴的对称点.求证:
(i)
三点共线.
(ii)
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某市高中某学科竞赛中,某区
名考生的参赛成绩的频率分布直方图如图所示.
![]()
(1)求这
名考生的平均成绩
(同一组中数据用该组区间中点值作代表);
(2)记
分以上为合格,
分及以下为不合格,结合频率分布直方图完成下表,能否在犯错误概率不超过
的前提下认为该学科竞赛成绩与性别有关?
不合格 | 合格 | 合计 | |
男生 |
| ||
女生 |
| ||
合计 |
|
附:
|
|
|
|
|
|
|
|
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com