科目: 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.
![]()
(Ⅰ)求这些产品质量指标值落在区间
内的频率;
(Ⅱ)用分层抽样的方法在区间
内抽取一个容量为6的样本,将该样本看成一个总体,从中任意
抽取2件产品,求这2件产品都在区间
内的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.
![]()
(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;
(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记
表示抽到“很幸福”的人数,求
的分布列及
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:
,过焦点F的直线l与抛物线C交于M,N两点.
(1)若直线l的倾斜角为
,求
的长;
(2)设M在准线上的射影为A,求证:A,O,N三点共线(O为坐标原点).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
正方形
所在平面,M是
的中点,二面角
的大小为
.
![]()
(1)设l是平面
与平面
的交线,证明
;
(2)在棱
是否存在一点N,使
为
的二面角.若不存在,说明理由:若存在,求
长.
查看答案和解析>>
科目: 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左顶点为
,离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
,求证:在
轴上存在点
,使得无论非零实数
怎样变化,总有
为直角,并求出点
的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】南方智运汽车公司在我市推出了共享汽车“Warmcar”,有一款车型为“众泰云”新能源共享汽车,其中一种租用方式“分时计费”规则为:0.15元/分钟+0.8元/公里.已知小李家离上班地点为10公里,每天租用该款汽车上、下班各一次,由于堵车、及红绿灯等原因每次路上开车花费的时间
(分钟)是一个随机变量,现统计了100次路上开车花费时间,在各时间段内是频数分布情况如下表所示:
时间 |
|
|
|
|
|
|
|
频数 | 2 | 6 | 14 | 36 | 28 | 10 | 4 |
(1)写出小李上班一次租车费用
(元)与用车时间
(分钟)的函数关系;
(2)根据上面表格估计小李平均每次租车费用;
(3)“众泰云”新能源汽车还有一种租用方式为“按月计费”,规则为每个月收取租金2350元,若小李每个月上班时间平均按21天计算,在不计电费和情况下,请你为小李选择一种省钱的租车方式.
查看答案和解析>>
科目: 来源: 题型:
【题目】某班级在一次数学竞赛中为全班学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖
元、二等奖
元、三等奖
元、参与奖
元,获奖人数的分配情况如图,则以下说法不正确的是( ).
![]()
A. 获得参与奖的人数最多
B. 各个奖项中参与奖的总费用最高
C. 购买每件奖品费用的平均数为
元
D. 购买的三等奖的奖品件数是一、二等奖的奖品件数和的二倍
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com