相关习题
 0  263843  263851  263857  263861  263867  263869  263873  263879  263881  263887  263893  263897  263899  263903  263909  263911  263917  263921  263923  263927  263929  263933  263935  263937  263938  263939  263941  263942  263943  263945  263947  263951  263953  263957  263959  263963  263969  263971  263977  263981  263983  263987  263993  263999  264001  264007  264011  264013  264019  264023  264029  264037  266669 

科目: 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为( )

A. 12000立方尺B. 11000立方尺

C. 10000立方尺D. 9000立方尺

查看答案和解析>>

科目: 来源: 题型:

【题目】已知命题p:若x2+y2>2,则|x|>1或|y|>1;命题q:直线mx-2y-m-2=0与圆x2+y2-3x+3y+2=0必有两个不同交点,则下列说法正确的是( )

A. p为真命题 B. p∧(q)为真命题

C. (p)∨q为假命题 D. (p)∨(q)为假命题

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若函数上单调递增,求实数的取值范围;

(2)当时,若方程有两个不等实数根,求实数的取值范围,并证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数上单调递增,求实数的取值范围;

(Ⅱ)若函数的图象与直线交于两点,线段中点的横坐标为,证明:为函数的导函数).

查看答案和解析>>

科目: 来源: 题型:

【题目】用一根长为分米的铁丝制作一个长方体框架(12条棱组成),使得长方体框架的底面长是宽的倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是分米,表示该长方体框架所占的空间体积(即长方体的体积).

(1)试求函数的解析式及其定义域;

(2)当该框架的底面宽取何值时,长方体框架所占的空间体积最大,并求出最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在三棱锥中,都是边长为2的等边三角形,分别是棱的中点.

(1)证明:四边形为矩形;

(2)若平面平面,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.杨辉三角中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目: 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目: 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为( )

A. 12000立方尺B. 11000立方尺

C. 10000立方尺D. 9000立方尺

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,并取相同的单位长度,曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)过点作直线的垂线交曲线两点,求.

查看答案和解析>>

同步练习册答案