相关习题
 0  264024  264032  264038  264042  264048  264050  264054  264060  264062  264068  264074  264078  264080  264084  264090  264092  264098  264102  264104  264108  264110  264114  264116  264118  264119  264120  264122  264123  264124  264126  264128  264132  264134  264138  264140  264144  264150  264152  264158  264162  264164  264168  264174  264180  264182  264188  264192  264194  264200  264204  264210  264218  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,平面是棱上的一点.

(1)若平面,证明:

(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数零点,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】有一个不透明的袋子,装有4个大小形状完全相同的小球,球上分别标有数字1234.现按如下两种方式随机取球两次,每种方式中第1次取到球的编号记为,第2次取到球的编号记为.

1)若逐个不放回地取球,求是奇数的概率;

2)若第1次取完球后将球再放回袋中,然后进行第2次取球,求直线与双曲线有公共点的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;

(2)求曲线与曲线交点的极坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图3是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.

表1:设备改造后样本的频数分布表

(1)完成下面的列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;

(2)根据图3和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;

(3)企业将不合格品全部销毁后,根据客户需求对合格品进行等级细分,质量指标值落在内的定为一等品,每件售价240元;质量指标值落在内的定为二等品,每件售价180元;其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的最大值是___

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若的极值点, 求函数的单调性;

(2)若时,,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.(其中为自然对数的底数)

(1)若恒成立,求的最大值;

(2)设,若存在唯一的零点,且对满足条件的不等式恒成立,求实数的取值集合.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,右焦点的坐标为,且点在椭圆.

(1)求椭圆的方程及离心率;

(2)过点的直线交椭圆于两点(直线不与轴垂直),已知点与点关于轴对称,证明:直线恒过定点,并求出此定点坐标.

查看答案和解析>>

同步练习册答案