相关习题
 0  264113  264121  264127  264131  264137  264139  264143  264149  264151  264157  264163  264167  264169  264173  264179  264181  264187  264191  264193  264197  264199  264203  264205  264207  264208  264209  264211  264212  264213  264215  264217  264221  264223  264227  264229  264233  264239  264241  264247  264251  264253  264257  264263  264269  264271  264277  264281  264283  264289  264293  264299  264307  266669 

科目: 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的单调区间;

(2)当时,若对任意的恒成立,求实数的值;

(3)求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且 ,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.

)求出2020年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);

2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】1)若关于x的不等式ax23x+20aR)的解集为{x|x1xb},求ab的值;

2)解关于x的不等式ax23x+25axaR).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

1)求数列的通项公式;

2)求证:数列是等差数列,求数列的通项公式;

3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形均为菱形,,且.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线与椭圆:交于两点.

1)若线段的中点为,求直线的方程;

2)记直线轴交于点,是否存在点,使得始终为定值?若存在,求点的坐标,并求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥PABC中,AB1BC2ACPCPAPBE是线段BC的中点.

1)求点C到平面APE的距离d

2)求二面角PEAB的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[ 010],(1020],(2030],(3040],(4050]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.

1)写出频率分布直方图(甲)中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)

2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;

3)设表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求的数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DEF分别是B1C1ABAA1的中点.

(1) 求证:EF∥平面A1BD

(2) A1B1A1C1,求证:平面A1BD⊥平面BB1C1C.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,底面为矩形,平面的中点

1)证明:平面

2)证明:平面

3)若三棱锥的体积为,求点D到平面的距离.

查看答案和解析>>

同步练习册答案