科目: 来源: 题型:
【题目】已知抛物线
的焦点为
,
为
上位于第一象限的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
.
(1)若当点
的横坐标为
,且
为等边三角形,求
的方程;
(2)对于(1)中求出的抛物线
,若点
,记点
关于
轴的对称点为
,
交
轴于点
,且
,求证:点
的坐标为
,并求点
到直线
的距离
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设不等式
确定的平面区域为U,
确定的平面区域为V.
(1)定义横、纵坐标为整数的点为“整点”,在区域U内任取3个整点,求这些整点中恰有2个整点在区域V内的概率;
(2)设集合
;集合
若从集合A到集合B可以建立m个不同的映射?从集合B到集合A可以建立n个不同的映射,求m,n的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种出口产品的关税税率
,市场价格
(单位:千元)与市场供应量
(单位:万件)之间近似满足关系式:
,其中
、
均为常数.当关税税率为
时,若市场价格为5千元,则市场供应量约为1万件;当关税税率为
时,若市场价格为7千元,则市场供应量约为2万件.
(1)试确定
、
的值;
(2)市场需求量
(单位:万件)与市场价格
近似满足关系式:
.当
时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(其中
),若点
是函数
图象的一个对称中心.
(1)求
的解析式,并求
的最小正周期;
(2)将函数
的图象向左平移
个单位,再将所得图象上各点的横坐标伸长为原来的
倍,纵坐标不变,得到函数
的图象,用 “五点作图法”作出函数
在区间
上的图象.
查看答案和解析>>
科目: 来源: 题型:
【题目】宜昌大剧院和宜昌奥体中心将是人们健康生活的最佳场所,若两处在同一直角坐标系中的坐标分别为
,
;假设至喜长江大桥所在的直线方程为直线
.现为方便大家出行,计划在至喜长江大桥上的点p处新增一出口通往两地,要使从 处到两地的总路程最短.
(1)求点p的坐标.
(2)一中高二体育特长生小陶和小陈相约某周日上午8时到9时在宜昌奥体中心会面,并约定先到者应等候另一个人一刻钟,过时即可离去,求两人能会面的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2
,BC=
,CD=PC=
。
![]()
(I)点E在线段PB上,满足CE//平面PAD,求
的值。
(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。
查看答案和解析>>
科目: 来源: 题型:
【题目】现有2位男生,3位女生去参加一个联欢活动,该活动有甲、乙两个项目可供参加者选择.
(Ⅰ)为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.求这5人中恰好有3人去参加甲项目联欢的概率;
(Ⅱ)若从这5人中随机选派3人去参加甲项目联欢,设
表示这3个人中女生的人数,求随机变量
的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com