科目: 来源: 题型:
【题目】在下列命题中,正确命题的序号为 (写出所有正确命题的序号).
①函数
的最小值为
;
②已知定义在
上周期为4的函数
满足
,则
一定为偶函数;
③定义在
上的函数
既是奇函数又是以2为周期的周期函数,则
;
④已知函数
,则
是
有极值的必要不充分条件;
⑤已知函数
,若
,则
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的顶点在原点,焦点
在
轴的正半轴,且过点
,过
的直线交抛物线于
,
两点.
(1)求抛物线的方程;
(2)设直线
是抛物线的准线,求证:以
为直径的圆与直线
相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】求满足下列条件的曲线方程
(1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点
在该椭圆上,求椭圆的方程.
(2)已知双曲线的离心率为
,焦点是
,
,求双曲线标准方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】设定义在R上的函数
,当
时,
取极大值
,且函数
的图象关于原点对称.
(1)求
的表达式;
(2)试在函数
的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在
上;
(3)设
,
,求证:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,右焦点为
,直线l经过点F,且与椭圆交于A,B两点,O为坐标原点.
(1)求椭圆的标准方程;
(2)当直线l绕点F转动时,试问:在x轴上是否存在定点M,使得
为常数?若存在,求出定点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】 已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年春节期间.当红彩视明星翟天临“不知“知网””学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文.将认定为“存在问题学位论文”。有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评.2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”。设毎篇学位论文被毎位专家评议为“不合格”的槪率均为
,且各篇学位论文是否被评议为“不合格”相互独立.
(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为
,求
;
(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com